
Chapter 6
Functions and Loops
Functions are the building blocks of almost every Python program.They’re where the real action takes place!
You’ve already seen how to use several functions, including print(),
len(), and round(). These are all built-in functions because theycome built into the Python language itself. You can also create user-deрned functions that perform specific tasks.
Functions break code into smaller chunks, and are great for tasks thata programuses repeatedly. Instead ofwriting the same code each timethe program need to perform the task, just call the function!
But sometimes you need to repeat some code several times in a row,and this is where loops come in.
In this chapter, you will learn:
• How to create user-defined functions
• How to write for and while loops
• What scope is and why it is important

Let’s dive in!
Leave feedback on this section »

135

https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiY3poMW5SZmQhT3JxM244X3M8TTlMdHk7Y0E3Q3tNNDJkLVYkejtGZCIsInQiOiJjaGFwdGVycy8wNi8wMS5tZCAoNDA0NjBjZDYzNzhkYWIwMSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi80MDQ2MGNkNjM3OGRhYjAxYjI3NmZhZGEyZmQ5YWJhNDBjZjk0ZmIxL2NoYXB0ZXJzLzA2LzAxLm1kIn0=

6.1. What is a Function, Really?
6.1 What is a Function, Really?
In the past few chapters you used functions like print() and len() todisplay text and determine the length of a string. But what is a func-tion, really?
In this section you’ll take a closer look at len() to learn more aboutwhat a function is and how it is executed.
Functions Are Values
One of the most important properties of a function in Python is thatfunctions are values and can be assigned to a variable.
In IDLE’s interactive window, inspect the name len by typing the fol-lowing in at the prompt:
>>> len

<built-in function len>

When you hit Enter, Python tells you that the name len is a variablewhose value is a built-in function.
Just like integer values have a type called int, and strings have a type
str, function values also have a type:
>>> type(len)

<class 'builtin_function_or_method'>

Like any other variable, you can assign any value you want to len:
>>> len = "I'm not the len you're looking for."

>>> len

"I'm not the len you're looking for."

Now len has a string value, and you can verify that the type is strwith
type():

136

6.1. What is a Function, Really?
>>> type(len)

<class 'str'>

The variable name len is a keyword in Python, and even though youcan change it’s value, it’s usually a bad idea to do so. Changing thevalue of len canmake your code confusing because it’s easy tomistakethe new len for the built-in function.
Important
If you typed in the previous code examples, you no longerhave access to the built-in len function in IDLE.
You can get it back with the following code:
>>> del len

The del keyword is used to un-assign a variable from a value. delstands for delete, but it doesn’t delete the value. Instead, it detachesthe name from the value and deletes the name.
Normally, after using del, trying to use the deleted variable nameraises a NameError. In this case, however, the name len doesn’t getdeleted:
>>> len

<built-in function len>

Because len is a built-in function name, it gets reassigned to the orig-inal function value.
By going through each of these steps, we’ve seen that a function’sname is separate from the function itself.
How Python Executes Functions
Now let’s take a closer look at how Python executes a function.
The first thing to notice is that you can’t execute a function by just

137

6.1. What is a Function, Really?
typing its name. You must call the function to tell Python to actuallyexecute it.
Let’s look at how this works with len():
>>> # Typing just the name doesn't execute the function.

>>> # IDLE inspects the variable as usual.

>>> len

<built-in function len>

>>> # Use parentheses to call the function.

>>> len()

Traceback (most recent call last):

File "<pyshell#3>", line 1, in <module>

len()

TypeError: len() takes exactly one argument (0 given)

In this example, Python raises a TypeErrorwhen len() is called because
len() expects an argument.
An argument is a value that gets passed to the function as input.Some functions can be called with no arguments, and some can takeas many arguments as you like. len() requires exactly one argument.
When a function is done executing, it returns a value as output. Thereturn value usually — but not always — depends on the values of anyarguments passed to the function.
The process for executing a function can be summarized in threesteps:
1. The function is called, and any arguments are passed to the func-tion as input.
2. The function executes, and some action is performed with thearguments.
3. The function returns, and the original function call is replacedwith the return value.

138

6.1. What is a Function, Really?
Let’s look at this in practice and see howPython executes the followingline of code:
>>> num_letters = len("four")

First, len() is called with the argument "four". The length of the string
"four" is calculated, which is the number 4. Then len() returns thenumber 4 and replaces the function call with the value.
So, after the function executes, the line of code looks like this:
>>> num_letters = 4

Then Python assigns the value 4 to num_letters and continues execut-ing any remaining lines of code in the program.
Functions Can Have Side Eпects
You’ve learnedhow to call a function and that they return a valuewhenthey are done executing. Sometimes, though, functions do more thanjust return a value.
When a function changes or affects something external to the func-tion itself, it is said to have a side eпect. You have already seen onefunction with a side effect: print().
When you call print() with a string argument, the string is displayedin the Python shell as text. But print() doesn’t return any text as avalue.
To see what print() returns, you can assign the return value of print()to a variable:
>>> return_value = print("What do I return?")

What do I return?

>>> return_value

>>>

When you assign print("What do I return?") to return_value, the string

139

6.2. Write Your Own Functions
"What do I return?" is displayed. However, when you inspect the valueof return_value, nothing is shown.
print() returns a special value called None that indicates the absence ofdata. None has a type called NoneType:
>>> type(return_value)

<class 'NoneType'>

>>> print(return_value)

None

When you call print(), the text that gets displayed is not the returnvalue. It is a side effect of print().
Now that you know that functions are values, just like strings andnumbers, and have learned how functions are called and executed,let’s take a look at how you can create your own user-defined func-tions.
Leave feedback on this section »

6.2 Write Your Own Functions
As you write longer and more complex programs, you may find thatyou need to use the same few lines of code repeatedly. Or maybe youneed to calculate the same formula with different values several timesin your code.
Youmight be tempted to copy and paste similar code to other parts ofyour program and modify it as needed, but this is usually a bad idea!
Repetitive code can be a nightmare to maintain. If you find a mistakein some code that’s been copied and pasted all over the place, you’llend up having to apply the fix everywhere the code was copied. That’sa lot of work, and you might miss a spot!
In this section, you’ll learn how to define your own functions so thatyou can avoid repeating yourself when you need to reuse code. Let’s

140

https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiT0dCX01wMEQyWT48X1lFMXxmNXFRKGl9WVhSXj9GSXpgIzYoSWdQJCIsInQiOiJjaGFwdGVycy8wNi8wMi5tZCAoMWQ1YWFjY2YxYTNhM2I2NikiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi8xZDVhYWNjZjFhM2EzYjY2YjYxNmY1MTdlMDgxNDcxMTI4ZjY4MjdlL2NoYXB0ZXJzLzA2LzAyLm1kIn0=

6.2. Write Your Own Functions
go!
The Anatomy of a Function
Every function has two parts:
1. The function signature defines the name of the function andany inputs it expects.
2. The function body contains the code that runs every time thefunction is used.
Let’s start by writing a function that takes two numbers as input andreturns their product. Here’s what this function might look like, withthe signature, body, and return statement identified with comments:
def multiply(x, y): # Function signature

Function body

product = x * y

return product

It might seem odd tomake a function for something as simple as the *operator. In fact, multiply is not a function you would probably writein a real-world scenario. But it makes a great first example for under-standing how functions are created!
Let’s break the function down to see what’s going on.
The Function Signature
The first line of code in a function is called the function signature.It always starts with the def keyword, which is short for “define.”
Let’s look more closely at the signature of the multiply function:
def multiply(x, y):

The function signature has four parts:
1. The def keyword

141

6.2. Write Your Own Functions
2. The function name, multiply
3. The parameter list, (x, y)

4. A colon (:) at the end of the line
When Python reads a line beginning with the def keyword, it createsa new function. The function is assigned to a variable with the samename as the function name.

Note
Since function names become variables, they must follow thesame rules for variable names that you learned in Chapter 3.
So, a function name can only contain numbers, letters, and un-derscores, and must not begin with a number.

The parameter list is a list of parameter names surrounded by open-ing and closing parentheses. It defines the function’s expected inputs.
(x, y) is the parameter list for the multiply function. It creates twoparameters, x and y.
A parameter is sort of like a variable, except that it has no value.It is a placeholder for actual values that are provided whenever thefunction is called with one or more arguments.
Code in the function body can use parameters as if they are variableswith real values. For example, the function body may contain a lineof code with the expression x * y.
Since x and y have no value, x * y has no value. Python saves theexpression as a template and fills in the missing values when the func-tion is executed.
A function can have any number of parameters, including no param-eters at all!

142

6.2. Write Your Own Functions
The Function Body
The function body is the code that gets run whenever the functionis used in your program. Here’s the function body for the multiplyfunction:
def multiply(x, y):

Function body

product = x * y

return product

multiply is a pretty simple function. It’s body has only two lines ofcode!
The first line creates a variable called product and assigns to it the value
x * y. Since x and y have no values yet, this line is really a template forthe value product is assigned when the function is executed.
The second line of code is called a return statement. It starts withthe return keyword and is followed by the variable product. WhenPython reaches the return statement, it stops running the functionand returns the value of product.
Notice that both lines of code in the function body are indented. Thisis vitally important! Every line that is indented below the functionsignature is understood to be part of the function body.
For instance, the print() function in the following example is not apart of the function body because it is not indented:
def multiply(x, y):

product = x * y

return product

print("Where am I?") # Not in the function body.

If print() is indented, then it becomes a part of the function body evenif there is a blank line between print() and the previous line:

143

6.2. Write Your Own Functions
def multiply(x, y):

product = x * y

return product

print("Where am I?") # In the function body.

There is one rule that you must follow when indenting code in afunction’s body. Every line must be indented by the same number ofspaces.
Try saving the following code to a file called multiply.py and runningit from IDLE:
def multiply(x, y):

product = x * y

return product # Indented with one extra space.

IDLE won’t run the code! A dialog box appears with the error “unex-pected indent.” Python wasn’t expecting the return statement to beindented differently than the line before it.
Another error occurs when a line of code is indented less than the lineabove it, but the indentation doesn’tmatch any previous lines. Modifythe multiply.py file to look like this:
def multiply(x, y):

product = x * y

return product # Indented less than previous line.

Now save and run the file. IDLE stops it with the error “unindentdoes not match any outer indentation level.” The return statementisn’t indented with the same number of spaces as any other line in thefunction body.

144

6.2. Write Your Own Functions
Note
Although Python has no rules for the number of spaces used toindent code in a function body, PEP 8 recommends indentingwith four spaces.
We follow this convention throughout this book.

Once Python executes a return statement, the function stops runningand returns the value. If any code appears below the return statementthat is indented so as to be part of the function body, it will never run.
For instance, the print() function will never be executed in the follow-ing function:
def multiply(x, y):

product = x * y

return product

print("You can't see me!")

If you call this version of multiply(), you will never see the string "You

can't see me!" displayed.
Calling a User-Deрned Function
You call a user-defined function just like any other function. Type thefunction name followed by a list of arguments in between parentheses.
For instance, to call multiply() with the argument 2 and 4, just type:
multiply(2, 4)

Unlike built-in functions, user-defined functions are not available un-til they have been defined with the def keyword. You must define thefunction before you call it.
Try saving and running the following script:

145

https://pep8.org/#indentation
https://pep8.org/#indentation

6.2. Write Your Own Functions
num = multiply(2, 4)

print(num)

def multiply(x, y):

product = x * y

return product

When Python reads the line num = multiply(2, 4), it doesn’t recognizethe name multiply and raises a NameError:
Traceback (most recent call last):

File "C:Usersdaveamultiply.py", line 1, in <module>

num = multiply(2, 4)

NameError: name 'multiply' is not defined

To fix the error, move the function definition to the top of the file:
def multiply(x, y):

product = x * y

return product

num = multiply(2, 4)

print(num)

Now when you save and run the script, the value 8 is displayed in theinteractive window.
Functions With No Return Statement
All functions in Python return a value, even if that value is None. How-ever, not all functions need a return statement.
For example, the following function is perfectly valid:
def greet(name):

print(f"Hello, {name}!")

greet() has no return statement, but works just fine:

146

6.2. Write Your Own Functions
>>> greet("Dave")

Hello, Dave!

Even though greet() has no return statement, it still returns a value:
>>> return_value = greet("Dave")

Hello, Dave!

>>> print(return_value)

None

Notice also that the string "Hello, Dave!" is printed even when the re-sult of greet("Dave") is assigned to a variable. That’s because the callto print() inside of the greet() function body produces the side effectof always printing to the console.
If you weren’t expecting to see "Hello, Dave!" printed, then you justexperienced one of the issues with side effects. They aren’t alwaysexpected!
When you create your own functions, you should always documentwhat they do. That way other developers can read the documentationand know how to use the function and what to expect when it is called.
Documenting Your Functions
To get help with a function in IDLE’s interactive window, you can usethe help() function:
>>> help(len)

Help on built-in function len in module builtins:

len(obj, /)

Return the number of items in a container.

When you pass a variable name or function name to help(), it displayssome useful information about it. In this case, help() tells you that lenis a built-in function that returns the number of items in a container.

147

6.2. Write Your Own Functions
Note
A container is a special name for an object that contains otherobjects. A string is a container because it contains characters.
You will learn about other container types in Chapter 9.

Let’s seewhat happenswhen you call help() on the multiply() function:
>>> help(multiply)

Help on function multiply in module __main__:

multiply(x, y)

help() displays the function signature, but there isn’t any informationabout what the function does. To better document multiply(), we needto provide a docstring.
A docstring is a triple-quoted string literal placed at the top of thefunction body. Docstrings are used to document what a function doesand what kinds of parameters it expects.
Here’s what multiply() looks like with a docstring added to it:
def multiply(x, y):

"""Return the product of two numbers x and y."""

product = x * y

return product

Update the multiply.py script with the docstring, then save and runthe script. Now you can use help() in the interactive window to seethe docstring:
>>> help(multiply)

Help on function multiply in module __main__:

multiply(x, y)

Return the product of two numbers x and y.

148

6.3. Challenge: Convert Temperatures
PEP 8 doesn’t say much about docstrings, except that every functionshould have one.
There are a number of standardized docstring formats, but we won’tget into them here. Some general guidelines for writing docstringscan be found in PEP 257.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Write a function called cube() with one number parameter and re-turns the value of that number raised to the third power. Test thefunction by displaying the result of calling your cube() function ona few different numbers.
2. Write a function called greet() that takes one string parametercalled name and displays the text "Hello <name>!", where <name> isreplaced with the value of the name parameter.
Leave feedback on this section »

6.3 Challenge: Convert Temperatures
Write a script called temperature.py that defines two functions:
1. convert_cel_to_far()which takes one float parameter representingdegrees Celsius and returns a float representing the same temper-ature in degrees Fahrenheit using the following formula:

F = C * 9/5 + 32

2. convert_far_to_cel() which take one float parameter representingdegrees Fahrenheit and returns a float representing the same tem-perature in degrees Celsius using the following formula:
C = (F - 32) * 5/9

149

https://pep8.org/#documentation-strings
https://pep8.org/#documentation-strings
https://www.python.org/dev/peps/pep-0257/
https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiPkYzXjsjSkshRz51PG4mb15HeH1XIW15MjlMJj1yV2c7aEZmXzkkViIsInQiOiJjaGFwdGVycy8wNi8wMy5tZCAoNmZhMzA3MWM1OGEzY2ZkNykiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi82ZmEzMDcxYzU4YTNjZmQ3MGVmOTQ1MjgzODhjNmI2NDA0ZTkzNDAzL2NoYXB0ZXJzLzA2LzAzLm1kIn0=

6.4. Run in Circles
The script should first prompt the user to enter a temperature in de-grees Fahrenheit and then display the temperature converted to Cel-sius.
Then prompt the user to enter a temperature in degrees Celsius anddisplay the temperature converted to Fahrenheit.
All converted temperatures should be rounded to 2 decimal places.
Here’s a sample run of the program:
Enter a temperature in degrees F: 72

72 degrees F = 22.22 degrees C

Enter a temperature in degrees C: 37

37 degrees C = 98.60 degrees F

You can пnd the solutions to this code challenge andmany other bonusresources online at realpython.com/python-basics/resources.
Leave feedback on this section »

6.4 Run in Circles
One of the great things about computers is that you can make themdo the same thing over and over again, and they rarely complain orget tired.
A loop is a block of code that gets repeated over and over again eithera specified number of times or until some condition is met. Thereare two kinds of loops in Python: while loops and for loops. In thissection, you’ll learn how to use both.
Let’s start by looking at how while loops work.

150

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiR3BZJkk0c3Q2dmIqLUZgNTV6WV9QLTUwOWp1N0dycXhfXzVrM1JgSiIsInQiOiJjaGFwdGVycy8wNi8wNC5tZCAoODI5NzI1YjIxN2QwOTc3ZSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi84Mjk3MjViMjE3ZDA5NzdlM2Y2Y2Q0ZTI4ZDk4MjFkOWRmZjQ3MTEyL2NoYXB0ZXJzLzA2LzA0Lm1kIn0=

6.4. Run in Circles
The while Loop
while loops repeat a section of code while some condition is true.There are two parts to every while loop:
1. The while statement starts with the while keyword, followed by atest condition, and ends with a colon (:).
2. The loop body contains the code that gets repeated at each stepof the loop. Each line is indented four spaces.
When a while loop is executed, Python evaluates the test condition anddetermines if it is true or false. If the test condition is true, then thecode in the loop body is executed. Otherwise, the code in the body isskipped and the rest of the program is executed.
If the test condition is true and the body of the loop is executed, thenonce Python reaches the end of the body, it returns to the while state-ment and re-evaluates the test condition. If the test condition is stilltrue, the body is executed again. If it is false, the body is skipped.
This process repeats over and over until the test condition fails, caus-ing Python to loop over the code in the body of the while loop.
Let’s look at an example. Type the following code into the interactivewindow:
>>> n = 1

>>> while n < 5:

... print(n)

... n = n + 1

...

1

2

3

4

First, the integer 1 is assigned to the variable n. Then a while loop iscreated with the test condition n < 5, which checks whether or not thevalue of n is less than 5.
151

6.4. Run in Circles
If n is less than 5, the body of the loop is executed. There are two linesof code in the loop body. In the first line, the value of n is printed onthe screen, and then n is incremented by 1 in the second line.
The loop execution takes place in five steps, described in the followingtable:
Step # Value of n Test Condition What Happens

1 1 1 < 5 (true) 1 printed; n incremented to 22 2 2 < 5 (true) 2 printed; n incremented to 33 3 3 < 5 (true) 3 printed; n incremented to 44 4 4 < 5 (true) 4 printed; n incremented to 55 5 5 < 5 (false) Nothing printed; loop ends.

If you aren’t careful, you can create an inрnite loop. This happenswhen the test condition is always true. An infinite loop never termi-nates. The loop body keeps repeating forever.
Here’s an example of an infinite loop:
>>> n = 1

>>> while n < 5:

... print(n)

...

The only difference between this while loop and the previous one isthat n is never incremented in the loop body. At each step of the loop,
n is equal to 1. That means the test condition n < 5 is always true, andthe number 1 is printed over and over again forever.

152

6.4. Run in Circles
Note
Infinite loops aren’t inherently bad. Sometimes they are exactlythe kind of loop you need.
For example, code that interacts with hardwaremay use an infi-nite loop to constantly check whether or not a button or switchhas been activated.

If you run a program that enters an infinite loop, you can forcePython to quit by pressing Ctrl+C. Python stops running the programand raises a KeyboardInterrupt error:
Traceback (most recent call last):

File "<pyshell#8>", line 2, in <module>

print(n)

KeyboardInterrupt

Let’s look at an example of a while loop in practice. One use of a whileloop is to checkwhether or not user inputmeets some condition and, ifnot, repeatedly ask the user for new input until valid input is received.
For instance, the following program continuously asks a user for apositive number until a positive number is entered:
num = float(input("Enter a positive number: "))

while num <= 0:

print("That's not a positive number!")

num = float(input("Enter a positive number: "))

First, the user is prompted to enter a positive number. The test con-dition num <= 0 determines whether or not num is less than or equal to
0.
If num is positive, then the test condition fails. The body of the loop isskipped and the program ends.
Otherwise, if num is 0 or negative, the body of the loop executes. The

153

6.4. Run in Circles
user is notified that their input was incorrect, and they are promptedagain to enter a positive number.
while loops are perfect for repeating a section of code while some con-dition ismet. They aren’t well-suited, however, for repeating a sectionof code a specific number of times.
The for Loop
A for loop executes a section of code once for each item in a collectionof items. The number of times that the code is executed is determinedby the number of items in the collection.
Like its while counterpart, the for loop has two main parts:
1. The for statement begins with the for keyword, followed by amembership expression, and ends in a colon (:).
2. The loop body contains the code to be executed at each step ofthe loop, and is indented four spaces.
Let’s look at an example. The following for loop prints each letter ofthe string "Python" one at a time:
for letter in "Python":

print(letter)

In this example, the for statement is for letter in "Python". The mem-bership expression is letter in "Python".
At each step of the loop, the variable letter is assigned the next letterin the string "Python", and then the value of letter is printed.
The loops runs once for each character in the string "Python", so theloop body executes six times. The following table summarizes the ex-ecution of this for loop:

Step # Value of letter What Happens
1 "P" P is printed

154

6.4. Run in Circles

Step # Value of letter What Happens
2 "y" y is printed3 "t" t is printed4 "h" h is printed5 "o" o is printed6 "n" n is printed

To see why for loops are better for looping over collections of items,let’s re-write the for loop in previous example as a while loop.
To do so, we can use a variable to store the index of the next characterin the string. At each step of the loop, we’ll print out the character atthe current index and then increment the index.
The loop will stop once the value of the index variable is equal to thelength of the string. Remember, indices start at 0, so the last index ofthe string "Python" is 5.
Here’s how you might write that code:
word = "Python"

index = 0

while index < len(word):

print(word[index])

index = index + 1

That’s significantly more complex than the for loop version!
Not only is the for loop less complex, the code itself looksmorenatural.It more closely resembles how youmight describe the loop in English.

155

6.4. Run in Circles
Note
You may sometimes hear people describe some code as beingparticularly “Pythonic.” The term Pythonic is generally usedto describe code that is clear, concise, and uses Python’s built-infeatures to its advantage.
In these terms, using a for loop to loop over a collection of itemsis more Pythonic than using a while loop.

Sometimes it’s useful to loop over a range of numbers. Python has ahandy built-in function range() that produces just that — a range ofnumbers!
For example, range(3) returns the range of integers starting with 0 andup to, but not including, 3. That is, range(3) is the range of numbers 0,
1, and 2.
You can use range(n), where n is any positive number, to execute a loopexactly n times. For instance, the following for loop prints the string
"Python" three times:
for n in range(3):

print("Python")

You can also give a range a starting point. For example, range(1, 5)is the range of numbers 1, 2, 3, and 4. The first argument is the start-ing number, and the second argument is the endpoint, which is notincluded in the range.
Using the two-argument version of range(), the following for loopprints the square of every number starting with 10 and up to, but notincluding, 20:
for n in range(10, 20):

print(n * n)

Let’s look at a practical example. The following program asks the userto input an amount and then displays how to split that amount be-
156

6.4. Run in Circles
tween 2, 3, 4, and 5 people:
amount = float(input("Enter an amount: "))

for num_people in range(2, 6):

print(f"{num_people} people: ${amount / num_people:,.2f} each")

The for loop loops over the number 2, 3, 4, and 5, and prints the num-ber of people and the amount each person should pay. The format-ting specifier ,.2f is used to format the amount as fixed-point numberrounded to two decimal places and commas every three digits.
Running the programwith the input 10 produces the following output:
Enter an amount: 10

2 people: $5.00 each

3 people: $3.33 each

4 people: $2.50 each

5 people: $2.00 each

for loops are generally used more often than while loops in Python.Most of the time, a for loop is more concise and easier to read than anequivalent while loop.
Nested Loops
As long as you indent the code correctly, you can even put loops insideof other loops.
Type the following into IDLE’s interactive window:
for n in range(1, 4):

for j in range(4, 7):

print(f"n = {n} and j = {j}")

When Python enters the body of the first for loop, the variable n isassigned the value 1. Then the body of the second for loop is executedand j is assigned the value 4. The first thing printed is n = 1 and j = 4.

157

6.4. Run in Circles
After executing the print() function, Python returns to the inner forloop, assigns to j the value of 5, and then prints n = 1 and j = 5. Pythondoesn’t return the outer for loop because the inner for loop, which isinside the body of the outer for loop, isn’t done executing.
Next, j is assigned the value 6 and Python prints n = 1 and j = 6. Atthis point, the inner for loop is done executing, so control returns tothe outer for loop.
The variable n gets assigned the value 2, and the inner for loop executesa second time. That is, j is assigned the value 4 and n = 2 and j = 4 isprinted to the console.
The two loops continue to execute in this fashion, and the final outputlooks like this:
n = 1 and j = 4

n = 1 and j = 5

n = 1 and j = 6

n = 2 and j = 4

n = 2 and j = 5

n = 2 and j = 6

n = 3 and j = 4

n = 3 and j = 5

n = 3 and j = 6

A loop inside of another loop is called a nested loop, and they comeup more often than you might expect. You can nest while loops insideof for loops, and vice versa, and even nest loops more than two levelsdeep!

158

6.4. Run in Circles
Important
Nesting loops inherently increases the complexity of your code,as you can see by the dramatic increase in the number of stepsrun in the previous example compared to exampleswith a single
for loop.
Using nested loops is sometimes the only way to get somethingdone, but too many nested loops can have a negative effect ona program’s performance.

Loops are a powerful tool. They tap into one of the greatest advan-tages computers provide as tools for computation: the ability to re-peat the same task a vast number of times without tiring and withoutcomplaining.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Write a for loop that prints out the integers 2 through 10, each ona new line, by using the range() function.
2. Use a while loop that prints out the integers 2 through 10 (Hint:You’ll need to create a new integer first.)
3. Write a function called doubles() that takes one number as its inputand doubles that number. Then use the doubles() function in aloop to double the number 2 three times, displaying each result ona separate line. Here is some sample output:

4

8

16

Leave feedback on this section »

159

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoieDZwMDtJLT9vTy10YWNwcCFCanlxZyFKTlFXOEFvNCsqM3NkbV9WTSIsInQiOiJjaGFwdGVycy8wNi8wNS5tZCAoNTBhNTRmYTAwNmIzM2FhMCkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi81MGE1NGZhMDA2YjMzYWEwZDhjZGI3MmUwMGNkMDI1ODhhMmYzMjU1L2NoYXB0ZXJzLzA2LzA1Lm1kIn0=

6.5. Challenge: Track Your Investments
6.5 Challenge: Track Your Investments
In this challenge, you will write a program called invest.py that tracksthe growing amount of an investment over time.
An initial deposit, called the principal amount, is made. Each year,the amount increases by a fixed percentage, called the annual rate ofreturn.
For example, a principal amount of $100with an annual rate of returnof 5% increases the first year by $5. The second year, the increase is5% of the new amount $105, which is $5.25.
Write a function called invest with three parameters: the principalamount, the annual rate of return, and the number of years to calcu-late. The function signature might look something like this:
def invest(amount, rate, years):

The function then prints out the amount of the investment, roundedto 2 decimal places, at the end of each year for the specified numberof years.
For example, calling invest(100, .05, 4) should print the following:
year 1: $105.00

year 2: $110.25

year 3: $115.76

year 4: $121.55

To finish the program, prompt the user to enter an initial amount, anannual percentage rate, and a number of years. Then call invest() todisplay the calculations for the values entered by the user.
You can пnd the solutions to this code challenge andmany other bonusresources online at realpython.com/python-basics/resources.
Leave feedback on this section »

160

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiXj0oKXRnRkcmcHYma34pVGZ3N0EhSFlwbW07PTA2SlErZlJxLUU0KSIsInQiOiJjaGFwdGVycy8wNi8wNi5tZCAoOTBjMjVjOWZkYTdiMWZjYSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi85MGMyNWM5ZmRhN2IxZmNhMGZjNmRiNzJiYjZmYWFmZjQ2OTcyYmJlL2NoYXB0ZXJzLzA2LzA2Lm1kIn0=

6.6. Understand Scope in Python
6.6 Understand Scope in Python
Any discussion of functions and loops in Python would be incompletewithout some mention of the issue of scope.
Scope can be one of the more difficult concepts to understand in pro-gramming, so in this section you will get a gentle introduction to it.
By the end of this section, you’ll know what a scope is and why it isimportant. You will also learn the LEGB rule for scope resolution.
What Is a Scope?
When you assign a value to a variable, you are giving that value a name.Names are unique. For example, you can’t assign the same name totwo different numbers.
>>> x = 2

>>> x

2

>>> x = 3

>>> x

3

When you assign 3 to x, you can no longer recall the value 2 with thename x.
This behavior makes sense. After all, if the variable x has the values 2and 3 simultaneously, how do you evaluate x + 2? Should it be 4 or 5?
As it turns out, there is a way to assign the same name to two differentvalues. Try running the following script:
x = "Hello World"

def func():

x = 2

161

6.6. Understand Scope in Python
print(f"Inside 'func', x has the value {x}")

func()

print(f"Outside 'func', x has the value {x}")

In this example, the variable x is assigned two different values. x isassigned "Hello, World" at the beginning, and is assigned 2 inside of
func().
The output of the script, which you might find surprising, looks likethis:
Inside 'func', x has the value 2

Outside 'func', x has the value Hello World

How does x still have the value "Hello World" after calling func(), whichchanges the value of x to 2?
The answer is that the function func() has a different scope than thecode that exists outside of the function. That is, you can name anobject inside func() the same name as something outside func() andPython can keep the two separated.
The function body has what is known as a local scope, with its ownset of names available to it. Code outside of the function body is in theglobal scope.
You can think of a scope as a set of names mapped to objects. Whenyou use a particular name in your code, such as a variable or a functionname, Python checks the current scope to determine whether or notthat name exists.
Scope Resolution
Scopes have a hierarchy. For example, consider the following:
x = 5

162

6.6. Understand Scope in Python
def outer_func():

y = 3

def inner_func():

z = x + y

return z

return inner_func()

Note
The inner_func() function is called an inner function becauseit is defined inside of another function. Just like you can nestloops, you can also define functions within other functions!
You can read more about inner functions in Real Python’s arti-cle Inner Functions—What Are They Good For?.

The variable z is in the local scope of inner_func(). When Python exe-cutes the line z = x + y, it looks for the variables x and y in the localscope. However, neither of them exist there, so it moves up to thescope of the outer_func() function.
The scope for outer_func() is an enclosing scope of inner_func(). It isnot quite the global scope, and is not the local scope for inner_func().It lies in between those two.
The variable y is defined in the scope for outer_func() and is assignedthe value 3. However, x does not exist in this scope, so Python movesup once again to the global scope. There it finds the name x, whichhas the value 5. Now that the names x and y are resolved, Python canexecute the line z = x + y, which assigns to z the value of 8.
The LEGB Rule
A useful way to remember how Python resolves scope is with theLEGB rule. This rule is an acronym for Local, Enclosing, Global,Built-in.

163

https://realpython.com/inner-functions-what-are-they-good-for/

6.6. Understand Scope in Python
Python resolves scope in the order in which each scope appears in thelist LEGB. Here is a quick overview to help you remember how all ofthis works:
Local (L): The local, or current, scope. This could be the body of afunction or the top-level scope of a script. It always represents thescope that the Python interpreter is currently working in.
Enclosing (E): The enclosing scope. This is the scope one level upfrom the local scope. If the local scope is an inner function, the enclos-ing scope is the scope of the outer function. If the scope is a top-levelfunction, the enclosing scope is the same as the global scope.
Global (G): The global scope, which is the top-most scope in thescript. This contains all of the names defined in the script that arenot contained in a function body.
Built-in (B): The built-in scope contains all of the names, such askeywords, that are built-in to Python. Functions such as round() and
abs() are in the built-in scope. Anything that you can use without firstdefining yourself is contained in the built-in scope.
Break the Rules
Consider the following script. What do you think the output is?
total = 0

def add_to_total(n):

total = total + n

add_to_total(5)

print(total)

You would think that script outputs the value 5, right? Try running itto see what happens.
Something unexpected occurs. You get an error!

164

6.6. Understand Scope in Python
Traceback (most recent call last):

File "C:/Users/davea/stuff/python/scope.py", line 6, in <module>

add_to_total(5)

File "C:/Users/davea/stuff/python/scope.py", line 4, in add_to_total

total = total + n

UnboundLocalError: local variable 'total' referenced before assignment

Wait aminute! According to theLEGB rule, Python shouldhave recog-nized that the name total doesn’t exist in the add_to_total() function’slocal scope and moved up to the global scope to resolve the name,right?
The problem here is that the script attempts tomake an assignment tothe variable total, which creates a new name in the local scope. Then,when Python executes the right-hand side of the assignment it findsthe name total in the local scope with nothing assigned to it yet.
These kinds of errors are tricky and are one of the reasons it is bestto use unique variable and function names no matter what scope youare in.
You can get around this issue with the global keyword. Try runningthe following altered script:
total = 0

def add_to_total(n):

global total

total = total + n

add_to_total(5)

print(total)

This time, you get the expected output 5. Why’s that?
The line global total tells Python to look in the global scope for thename total. That way, the line total = total + n does not create a newlocal variable.

165

6.7. Summary and Additional Resources
Although this “fixes” the script, the use of the global keyword is con-sidered bad form in general.
If you find yourself using global to fix problems like the one above,stop and think if there is a better way to write your code. Often, you’llfind that there is!
Leave feedback on this section »

6.7 Summary and Additional Resources
In this chapter, you learned about two of the most essential conceptsin programming: functions and loops.
First, you learned how to define your own custom functions. You sawthat functions are made up of two parts:
1. The function signature, which starts with the def keyword andincludes the name of the function and the function’s parameters
2. The function body, which contains the code that runs wheneverthe function is called.
Functions help avoid repeating similar code throughout a program bycreating re-usable components. This helps make code easier to readand maintain.
Then you learned about Python’s two kinds of loops:
1. while loops repeat some code while some condition remains true
2. for loops repeat some code for each element in a set of objects
Finally, you learned what a scope is and how Python resolves scopeusing the LEGB rule.

166

https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiLV5xKEg3WDJfbXNrUiYrOTxKe3swRDxxbz0mdEkrNjl5Myk9KFpAQiIsInQiOiJjaGFwdGVycy8wNi8wNy5tZCAoNTcyZjg4ZTc2ZjY2MGU4NykiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi81NzJmODhlNzZmNjYwZTg3MWEyNjYyMzE0NDFjMDYzY2RjY2MyYTYxL2NoYXB0ZXJzLzA2LzA3Lm1kIn0=

6.7. Summary and Additional Resources
Interactive Quiz
This chapter comes with a free online quiz to check your learn-ing progress. You can access the quiz using your phone or com-puter at the following web address:
realpython.com/quizzes/python-basics-6

Additional Resources
To learn more about functions and loops, check out the following re-sources:
• Python “while” Loops (Indefinite Iteration)
• Python “for” Loops (Definite Iteration)
• Recommended resources on realpython.com

Leave feedback on this section »

167

https://realpython.com/quizzes/python-basics-6/
https://realpython.com/python-while-loop/
https://realpython.com/python-for-loop/
https://realpython.com/python-basics/resources/#recommended-resources
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoia0FJLVk_ZWt6VDdSR15fWTE5Un10SXB3Qns5eGdBVVBoR3JLSEV7XiIsInQiOiJjaGFwdGVycy8wNi8wOC5tZCAoZGRhZTZmMjI0YjJhZDYzNSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi9kZGFlNmYyMjRiMmFkNjM1ZjRiMjc5ODQ3OWY5MTU4MjNlMzJhNDNkL2NoYXB0ZXJzLzA2LzA4Lm1kIn0=

