
Chapter 8
Conditional Logic andControl Flow
Nearly all of the code you have seen in this book is unconditional.That is, the code does not make any choices. Every line of code isexecuted in the order that is written or that functions are called, withpossible repetitions inside of loops.
In this chapter, you will learn how to write programs that perform dif-ferent actions based on different conditions using conditional logic.Paired with functions and loops, conditional logic allows you to writecomplex programs that handle many different situations.
In this chapter, you will learn how to:
• Compare the values of two or more variables
• Write if statements to control the flow of your programs
• Handle errors with try and except

• Apply conditional logic to create simple simulations
Let’s get started!
Leave feedback on this section »

186

https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoidmdMfHJ0MXxoWGd9dVJ8Pkc0bntXTnlMeld5a2U9YUIzWndpb3hFTCIsInQiOiJjaGFwdGVycy8wOC8wMS5tZCAoNWVmMDNjMTdkMTJkMTU1MCkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi81ZWYwM2MxN2QxMmQxNTUwZTg2ODU2MjM0ZjMyNzE5ZmRmOTIzMjFjL2NoYXB0ZXJzLzA4LzAxLm1kIn0=

8.1. Compare Values
8.1 Compare Values
Conditional logic is based on performing different actions dependingon whether or not some expression, called a conditional, is true orfalse. This idea is not specific to computers. Humans use conditionallogic all the time to make decisions.
For example, the legal age for purchasing alcoholic beverages in theUnited States is 21. The statement “If you are at least 21 years old,then youmay purchase a beer” is an example of conditional logic. Thephrase “you are at least 21 years old” is a conditional because it maybe either true or false.
In computer programming, conditionals often take the form of com-paring two values, such as determining if one value is greater thananother, or whether or not two values are equal to each other. A stan-dard set of symbols called boolean comparators are used to makecomparisons, and most of them may already be familiar to you.
The following table describes these boolean comparators:

Boolean Comparator Example Meaning
> a > b a greater than b

< a < b a less than b

>= a >= b a greater than or equal to b

<= a <= b a less than or equal to b

!= a != b a not equal to b

== a == b a equal to b

The term boolean is derived from the last name of the Englishmathematician George Boole, whose works helped lay the founda-tions of modern computing. In Boole’s honor, conditional logic issometimes called boolean logic, and conditionals are sometimescalled boolean expressions.
There is also a fundamental data type called the boolean, or bool forshort, which can have only one of two values. In Python, these values

187

8.1. Compare Values
are conveniently named True and False:
>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

Note that True and False both start with capital letters.
The result of evaluating a conditional is always a boolean value:
>>> 1 == 1

True

>>> 3 > 5

False

In the first example, since 1 is equal to 1, the result of 1 == 1 is True. Inthe second example, 3 is not greater than 5, so the result is False.
Important
A common mistake when writing conditionals is to use the as-signment operator =, instead of ==, to test whether or not twovalues are equal.
Fortunately, Python will raise a SyntaxError if this mistake is en-countered, so you’ll know about it before you run your program.

You may find it helpful to think of boolean comparators as asking aquestion about two values. a == b asks whether or not a and b have thesame value. Likewise, a != b asks whether or not a and b have differentvalues.
Conditional expressions are not limited to comparing numbers. Youmay also compare values such as strings:

188

8.1. Compare Values
>>> "a" == "a"

True

>>> "a" == "b"

False

>>> "a" < "b"

True

>>> "a" > "b"

False

The last two examples above may look funny to you. How could onestring be greater than or less than another?
The comparators < and > represent the notions of greater than and lessthan when used with numbers, but more generally they represent thenotion of order. In this regard, "a" < "b" checks if the string "a" comesbefore the string "b". But how are string ordered?
In Python, strings are ordered lexicographically, which is a fancyway to say they are ordered as they would appear in a dictionary. Soyou can think of "a" < "b" as asking whether or not the letter a comesbefore the letter b in the dictionary.
Lexicographic ordering extends to stringswith two ormore charactersby looking at each component letter of the string:
>>> "apple" < "astronaut"

True

>>> "beauty" > "truth"

False

Since strings can contain characters other than letters of the alphabet,the ordering must extend to those other characters as well.
We won’t go in to the details of how characters other than letters are

189

8.2. Add Some Logic
ordered. In practice, the < and > comparators aremost often usedwithnumbers, not strings.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. For each of the following conditional expressions, guess whetherthey evaluate to True or False. Then type them into the interactivewindow to check your answers:

1 <= 1

1 != 1

1 != 2

"good" != "bad"

"good" != "Good"

123 == "123"

2. For each of the following expressions, fill in the blank (indicated by
__) with an appropriate boolean comparator so that the expressionevaluates to True:
3 __ 4

10 __ 5

"jack" __ "jill"

42 __ "42"

Leave feedback on this section »

8.2 Add Some Logic
In addition to boolean comparators, Python has special keywordscalled logical operators that can be used to combine booleanexpressions. There are three logical operators: and, or, and not.
Logical operators are used to construct compound logical expressions.For themost part, these havemeanings similar to theirmeaning in theEnglish language, although the rules regarding their use in Python aremuch more precise.

190

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiWjNrWjAtKFlKZkh2Wmw0QHZMVncxNl9USEBoTFZjbUV5LUg-bWZ-ZyIsInQiOiJjaGFwdGVycy8wOC8wMi5tZCAoZGQ3OWZhYjVjNGQzNDAxMCkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi9kZDc5ZmFiNWM0ZDM0MDEwM2E1YjA2MTEyYTQwOGQ4MWEwNTViZWU5L2NoYXB0ZXJzLzA4LzAyLm1kIn0=

8.2. Add Some Logic
The and Keyword
Consider the following statements:
1. Cats have four legs.
2. Cats have tails.
In general, both of these statements are true.
When we combine these two statements using and, the resulting sen-tence “cats have four legs and cats have tails” is also a true statement.If both statements are negated, the compound statement “cats do nothave four legs and cats do not have tails” is false.
Even when we mix and match false and true statements, the com-pound statement is false. “Cats have four legs and cats do not havetails” and “cats do not have four legs and cats have tails” are both falsestatements.
When two statementsP andQ are combinedwith and, the truth valueof the compound statement “P and Q” is true if and only if both P andQ are true.
Python’s and operator works exactly the same way. Here are four ex-ample of compound statements with and:
>>> 1 < 2 and 3 < 4 # Both are True

True

Both statements are True, so the combination is also True.
>>> 2 < 1 and 4 < 3 # Both are False

False

Both statements are False, so their combination is also False.
>>> 1 < 2 and 4 < 3 # Second statement is False

False

1 < 2 is True, but 4 < 3 is False, so their combination is False.
191

8.2. Add Some Logic
>>> 2 < 1 and 3 < 4 # First statement is False

False

2 < 1 is False, and 3 < 4 is True, so their combination is False.
The following table summarizes the rules for the and operator:

Combination using and Result
True and True True

True and False False

False and True False

False and False False

You can test each of these rules in the interactive window:
>>> True and True

True

>>> True and False

False

>>> False and True

False

>>> False and False

False

The or Keyword
When we use the word “or” in everyday conversation, sometimes wemean an exclusive or. That is, only the first option or the secondoption can be true.
For example, the phrase “I can stay or I can go” uses the exclusive or.I can’t both stay and go. Only one of these options can be true.
In Python the or keyword is inclusive. That is, if P and Q are two ex-

192

8.2. Add Some Logic
pressions, the statement “P or Q” is true if any of the following aretrue:
1. P is true
2. Q is true
3. Both P and Q are true
Let’s look at some examples using numerical comparisons:
>>> 1 < 2 or 3 < 4 # Both are True

True

>>> 2 < 1 or 4 < 3 # Both are False

False

>>> 1 < 2 or 4 < 3 # Second statement is False

True

>>> 2 < 1 or 3 < 4 # First statement is False

True

Note that if any part of a compound statement is True, even if the otherpart is False, the result is always true True. The following table sum-marizes these results:
Combination using or Result
True or True True

True or False True

False or True True

False or False False

Again, you can verify all of this in the interactive window:
>>> True or True

True

193

8.2. Add Some Logic

>>> True or False

True

>>> False or True

True

>>> False or False

False

The not Keyword
The not keyword reverses the truth value of a single expression:

Use of not Result
not True False

not False True

You can verify this in the interactive window:
>>> not True

False

>>> not False

True

One thing to keep in mind with not, though, is that it doesn’t alwaysbehave the way you might expect when combined with comparatorslike ==. For example, not True == False returns True, but False == not

True will raise an error:
>>> not True == False

True

>>> False == not True

File "<stdin>", line 1

194

8.2. Add Some Logic
False == not True

^

SyntaxError: invalid syntax

This happens because Python parses logical operators according to anoperator precedence, just like arithmetic operators have an orderof precedence in everyday math.
The order of precedence for logical and boolean operators, from high-est to lowest, is described in the following table. Operators on thesame row have equal precedence.

Operator Order of Precedence (Highest to Lowest)
<, <=, ==, >=, >

not

and

or

Looking again at the expression False == not True, not has a lowerprecedence than == in the order of operations. This means that whenPython evaluates False == not True, it first tries to evaluate False ==

not which is syntactically incorrect.
You can avoid the SyntaxError by surrounding not True with parenthe-ses:
>>> False == (not True)

True

Grouping expressions with parentheses is a great way to clarify whichoperators belong to which part of a compound expression.
Building Complex Expressions
You can combine the and, or and not keywords with True and False tocreate more complex expressions. Here’s an example of a more com-plex expression:

195

https://docs.python.org/3/reference/expressions.html#operator-precedence

8.2. Add Some Logic
True and not (1 != 1)

What do you think the value of this expression is?
To find out, break the expression downby starting on the far right side.
1 != 1 is False, since 1 has the same value as itself. So you can simplifythe above expression as follows:
True and not (False)

Now, not (False) is the same as not False, which is True. So you cansimplify the above expression once more:
True and True

Finally, True and True is just True. So, after a few steps, you can see that
True and not (1 != 1) evaluates to True.
When working through complicated expressions, the best strategy isto start with the most complicated part of the expression and buildoutward from there.
For instance, try evaluating the following expression:
("A" != "A") or not (2 >= 3)

Start by evaluating the two expressions in parentheses. "A" != "A" is
False because "A" is equal to itself. 2 >= 3 is also False because 2 issmaller than 3. This gives you the following equivalent, but simpler,expression:
(False) or not (False)

Since not has a higher precedence than or, the above expression isequivalent to the following:
False or (not False)

not False is True, so you can simplify the expression once more:

196

8.2. Add Some Logic
False or True

Finally, since any compound expression with or is True if any one ofthe expressions on the left or right of the or is True, you can concludethat ("A" != "A") or not (2 >= 3) is True.
Grouping expressions in a compound conditional statement withparentheses improves readability. Sometimes, though, parenthesisare required to produce the expected value.
For example, upon first inspection, you may expect the following tooutput True, but it actually returns False:
>>> True and False == True and False

False

The reason this is False is that the == operator has a higher precedencethan and, so Python interprets the expression as True and (False ==

True) and False. Since False == True is False, this is equivalent to True

and False and False, which evaluates to False.
The following shows how to add parentheses so that the expressionevaluates to True:
>>> (True and False) == (True and False)

True

Logical operators and boolean comparators can be confusing the firsttime you encounter them, so if you don’t feel like the material in thissection comes naturally, don’t worry!
With a little bit of practice, you’ll be able tomake sense of what’s goingon and build your own compound conditional statements when youneed them.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.

197

https://realpython.com/python-basics/resources/

8.3. Control the Flow of Your Program
1. Figure out what the result will be (True or False) when evaluatingthe following expressions, then type them into the interactive win-dow to check your answers:

(1 <= 1) and (1 != 1)

not (1 != 2)

("good" != "bad") or False

("good" != "Good") and not (1 == 1)

2. Add parentheses where necessary so that each of the following ex-pressions evaluates to True:
False == not True

True and False == True and False

not True and "A" == "B"

Leave feedback on this section »

8.3 Control the Flow of Your Program
Now that we can compare values to one other with boolean compara-tors and build complex conditional statements with logical operators,we can add some logic to our code so that it performs different actionsfor different conditions.
The if Statement
An if statement tells Python to only execute a portion of code if a con-dition is met.
For example, the following if statement will print 2 and 2 is 4 if theconditional 2 + 2 == 4 is True:
if 2 + 2 == 4:

print("2 and 2 is 4")

In English, you can read this as “if 2 + 2 is 4, then print the string '2

and 2 is 4'.”
Just like while loops, an if statement has three parts:

198

https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiX1ZAbno4dEV4a2tOej9OcD1SNGZ4c3VBIURWJDVYMG8pJDJqbVc1fiIsInQiOiJjaGFwdGVycy8wOC8wMy5tZCAoZDZkNzYyY2Q4ZmUwYTIzZSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi9kNmQ3NjJjZDhmZTBhMjNlZWM5Y2E5Nzk5Njk1NDVjZTBhZmZhZGIzL2NoYXB0ZXJzLzA4LzAzLm1kIn0=

8.3. Control the Flow of Your Program
1. The if keyword
2. A test condition, followed by a colon
3. An indented block of code that is executed if the test condition is

True

In the above example, the test condition is 2 + 2 == 4. Since thisexpression is True, executing the if statement in IDLE displays thetext 2 and 2 is 4.
If the test condition is False (for instance, 2 + 2 == 5), Python skipsover the indented block of code and continues execution on the nextnon-indented line.
For example, the following if statement does not print anything:
if 2 + 2 == 5:

print("Is this the mirror universe?")

A universe where 2 + 2 == 5 is True would be pretty strange indeed!
Note
Leaving off the colon (:) after the test condition in an if state-ment raises a SyntaxError:
>>> if 2 + 2 == 4

SyntaxError: invalid syntax

Once the indented code block in an if statement is executed, Pythonwill continue to execute the rest of the program.
Consider the following script:
grade = 95

if grade >= 70:

print("You passed the class!")

199

8.3. Control the Flow of Your Program

print("Thank you for attending.")

The output looks like this:
You passed the class!

Thank you for attending.

Since grade is 95, the test condition grade >= 70 is True and the string
"You passed the class!" is printed. Then the rest of the code is executedand "Thank you for attending." is printed.
If you change the value of grade to 40, the output looks like this:
Thank you for attending.

The line print("Thank you for attending.") is executed whether or not
grade is greater than or equal to 70 because it is after the indented codeblock in the if statement.
A failing student will not know that they failed if all they see from yourcode is the text "Thank you for attending.".
Let’s add another if statement to tell the student they did not pass iftheir grade is less than 70:
grade = 40

if grade >= 70:

print("You passed the class!")

if grade < 70:

print("You did not pass the class :(")

print("Thank you for attending.")

The output now looks like this:

200

8.3. Control the Flow of Your Program
You did not pass the class :(

Thank you for attending.

In English, we can describe an alternate case with the word “other-wise.” For instance, “If your grade is 70 or above, you pass the class.Otherwise, you do not pass the class.”
Fortunately, there is a keyword that does for Python what the word“otherwise” does in English.
The else Keyword
The else keyword is used after an if statement in order to executesome code only if the if statement’s test condition is False.
The following script uses else to shorten the code in the previous scriptfor displaying whether or not a student passed a class:
grade = 40

if grade >= 70:

print("You passed the class!")

else:

print("You did not pass the class :(")

print("Thank you for attending.")

In English, the if and else statements together read as ”If the gradeis at least 70, then print the string "You passed the class!"; otherwise,print the string "You did not pass the class :(".
Notice that the else keyword has no test condition, and is followed bya colon. No condition is needed, because it executes for any conditionthat fails the if statement’s test condition.

201

8.3. Control the Flow of Your Program
Important
Leaving off the colon (:) from the else keyword will raise a
SyntaxError:
>>> if 2 + 2 == 5:

... print("Who broke my math?")

... else

SyntaxError: invalid syntax

The output from the above script is:
You did not pass the class :(

Thank you for attending.

The line that prints "Thank you for attending." still runs, even if theindented block of code after else is executed.
The if and else keywords work together nicely if you only need to testa condition with exactly two states.
Sometimes, you need to check three ormore conditions. For that, youuse elif.
The elif Keyword
The elif keyword is short for “else if” and canbeused to add additionalconditions after an if statement.
Just like if statements, elif statements have three parts:
1. The elif keyword
2. A test condition, followed by a colon
3. An indented code block that is executed if the test condition eval-uates to True

202

8.3. Control the Flow of Your Program
Important
Leaving off the colon (:) at the end of an elif statement raisesa SyntaxError:
>>> if 2 + 2 == 5:

... print("Who broke my math?")

... elif 2 + 2 == 4

SyntaxError: invalid syntax

The following script combines if, elif, and else to print the lettergrade a student earned in a class:
grade = 85 # 1

if grade >= 90: # 2

print("You passed the class with a A.")

elif grade >= 80: # 3

print("You passed the class with a B.")

elif grade >= 70: # 4

print("You passed the class with a C.")

else: # 5

print("You did not pass the class :(")

print("Thanks for attending.") # 6

Both grade >= 80 and grade >= 70 are Truewhen grade is 85, so youmightexpect both elif blocks on lines 3 and 4 to be executed.
However, only the first block for which the test condition is True isexecuted. All remaining elif and else blocks are skipped, so executingthe script has the following output:
You passed the class with a B.

Thanks for attending.

Let’s break down the execution of the script step-by-step:

203

8.3. Control the Flow of Your Program
1. grade is assigned the value 85 in the line marked 1.
2. grade >= 90 is False, so the if statement marked 2 is skipped.
3. grade >= 80 is True, so the block under the elif statement in line 3is executed, and "You passed the class with a B." is printed.
4. The elif and else statements in lines 4 and 5 are skipped, since thecondition for the elif statement on line 3 was met.
5. Finally, line 6 is executed and "Thanks for attending." is printed.
The if, elif, and else keywords are some of the most commonly usedkeywords in the Python language. They allow you to write code thatresponds to different conditions with different behavior.
The if statement allows you to solve more complex problems thancode without any conditional logic. You can even nest an if statementinside another one to write code that handles tremendously complexlogic!
Nested if Statements
Just like for and while loops canbenestedwithin one another, younestan if statement inside another to create complicated decisionmakingstructures.
Consider the following scenario. Two people play a one-on-one sportagainst one another. You must decide which of two players wins de-pending on the players’ scores and the sport they are playing:
• If the two players are playing basketball, the player with the great-est score wins.
• If the two players are playing golf, then the player with the lowestscore wins.
• In either sport, if the two scores are equal, the game is a draw.

The following program solves this using nested if statements:

204

8.3. Control the Flow of Your Program
sport = input("Enter a sport: ")

p1_score = int(input("Enter player 1 score: "))

p2_score = int(input("Enter player 2 score: "))

1

if sport.lower() == "basketball":

if p1_score == p2_score:

print("The game is a draw.")

elif p1_score > p2_score:

print("Player 1 wins.")

else:

print("Player 2 wins.")

2

elif sport.lower() == "golf":

if p1_score == p2_score:

print("The game is a draw.")

elif p1_score < p2_score:

print("Player 1 wins.")

else:

print("Player 2 wins.")

3

else:

print("Unknown sport")

This program first asks the user to input a sport and the scores for twoplayers.
In (#1), the string assigned to sport is converted to lowercase using
.lower() and is compared it to the string "basketball". This ensuresthat user input such as "Basketball" or "BasketBall" all get interpretedas the same sport.
Then the players scores are compared. If they are equal, the game isa draw. If player 1’s score is larger than player 2’s score, then player1 wins the basketball game. Otherwise, player 2 wins the basketballgame.

205

8.3. Control the Flow of Your Program
In (#2), the string assigned to sport is converted to lowercase gain andcompared to the string "golf". Then the players scores are checkedagain. If the two scores are equal, the game is a draw. If player 1’sscore is less than player 2’s score, then player 1 wins. Otherwise,player 2 wins.
Finally, in (#3), if the sport variable is assigned to a string other than
"basketball" or "golf", the message "Unknown sport" is displayed.
The output of the script depends on the input value. Here’s a sampleexecution using "basketball" as the sport:
Enter a sport: basketball

Player 1 score: 75

Player 2 score: 64

Player 1 wins.

Here’s the output with the same player scores and the sport changedto "golf":
Enter a sport: golf

Player 1 score: 75

Player 2 score: 64

Player 2 wins.

If you enter anything besides basketball or golf for the sport, the pro-gram displays Unknown sport.
All together, there are seven possible ways that the program can run,which are described in the following table:

Sport Score values
"basketball" p1_score == p2_score

"basketball" p1_score > p2_score

"basketball" p1_score < p2_score

"golf" p1_score == p2_score

"golf" p1_score > p2_score

"golf" p1_score < p2_score

206

8.3. Control the Flow of Your Program

Sport Score values
everything else any combination

Nested if statements can create many possible ways that your codecan run. If you have many deeply nested if statements (more thantwo levels), then the number of possible ways the code can executegrows quickly.
Note
The complexity that results from using deeply nested if state-ments may make it difficult to predict how your program willbehave under given conditions.
For this reason, nested if statements are generally discouraged.

Let’s see how we simplify the previous program by removing nested
if statements.
First, regardless of the sport, the game is a draw if p1_score is equal to
p2_score. So, we can move the check for equality out from the nested
if statements under each sport to make a single if statement:
if p1_score == p2_score:

print("The game is a draw.")

elif sport.lower() == "basketball":

if p1_score > p2_score:

print("Player 1 wins.")

else:

print("Player 2 wins.")

elif sport.lower() == "golf":

if p1_score < p2_score:

print("Player 1 wins.")

else:

207

8.3. Control the Flow of Your Program
print("Player 2 wins.")

else:

print("Unknown sport.")

Now there are only six ways that the program can execute.
That’s still quite a few ways. Can you think of any way to make theprogram simpler?
Here’s one way to simplify it. Player 1 wins if the sport is basketballand their score is greater than player 2’s score, or if the sport is golfand their score is less than player 2’s score.
We can describe this with compound conditional expressions:
sport = sport.lower()

p1_wins_basketball = (sport == "basketball") and (p1_score > p2_score)

p1_wins_golf = (sport == "golf") and (p1_score < p2_score)

p1_wins = player1_wins_basketball or player1_wins_golf

This code is pretty dense, so let’s walk through it one step at a time.
First the string assigned to sport is converted to all lowercase so thatwe can compare the value to other strings without worrying about er-rors due to case.
On the next line, we have a structure that might look a little strange.There is an assignment operator (=) followedby an expressionwith theequality comparator (==). This line evaluates the following compoundlogical expression and assigns its value to the p1_wins_basketball vari-able:
(sport == "basketball") and (p1_score > p2_score)

If sport is "basketball" and player 1’s score is larger than player 2’sscore, then p1_wins_basketball is True.
Next, a similar operation is done for the p1_wins_golf variable. If score

208

8.3. Control the Flow of Your Program
is "golf" and player 1’s score is less than player 2’s score, then p1_-

wins_golf is True.
Finally, p1_wins will be True if player 1 wins the basketball game or thegolf game, and will be False otherwise.
Using this code, you can simplify the program quite a bit:
if p1_score == p2_score:

print("The game is a draw.")

elif (sport.lower() == "basketball") or (sport.lower() == "golf"):

sport = sport.lower()

p1_wins_basketball = (sport == "basketball") and (p1_score > p2_score)

p1_wins_golf = (sport == "golf") and (p1_score < p2_score)

p1_wins = p1_wins_basketball or p1_wins_golf

if p1_wins:

print("Player 1 wins.")

else:

print("Player 2 wins.")

else:

print("Unknown sport")

In this revised version of the program, there are only four ways theprogram can execute, and the code is easier to understand.
Nested if statements are sometimes necessary. However, if you findyourself writing lots of nested if statements, it might be a good ideato stop and think about how you might simplify your code.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Write a script that prompts the user to enter a word using the

input() function, stores that input in a variable, and then displayswhether the length of that string is less than 5 characters, greaterthan 5 characters, or equal to 5 characters by using a set of if, elif
209

https://realpython.com/python-basics/resources/

