
3.1. Write a Python Script
Important
When you write code in a script, you do not need to include the
>>> prompt that you see in IDLE’s interactivewindow. Keep thisinmind if you copy and paste code from examples that show theREPL prompt.
Remember, though, that it’s not recommended that you copyand paste examples from the book. Typing each example inyourself really pays off!

Before you can run your script, you must save it. From the menu atthe top of the window, select File Save and save the script as hello_-
world.py. The .py file extension is the conventional extension used toindicate that a file contains Python code.
In fact, if you save your script with any extension other than .py, thecode highlighting will disappear and all the text in the file will be dis-played in black. IDLEwill only highlight Python codewhen it is storedin a .py file.
Once the script is saved, all you have to do to run the program is select
Run Run Module from the script window and you’ll see Hello, worldappear in the interactive window:
Hello, world

Note
You can also press F5 to run a script from the script window.

Every time you run a script you will see something like the followingoutput in the interactive window:
>>> =================== RESTART ===================

This is IDLE’s way of separating output from distinct runs of a script.Otherwise, if you run one script after another, it may not be clear what
48

3.2. Mess Things Up
output belongs to which script.
To open an existing script in IDLE, select File Open... from themenuin either the script window or the interactive window. Then browsefor and select the script file you want to open. IDLE opens scripts ina new script window, so you can have several scripts open at a time.

Note
Double-clicking on a .py file from a file manager, such as Win-dows Explorer, does execute the script in a new window. How-ever, the window is closed immediately when the script is donerunning—often before you can even see what happened.
To open the file in IDLE so that you can run it and see the output,you can right-click on the file icon (Ctrl + Click on macOS) andchoose to Edit with IDLE .

Leave feedback on this section »

3.2 Mess Things Up
Everybody makes mistakes—especially while programming! In caseyou haven’t made any mistakes yet, let’s get a head start on that andmess something up on purpose to see what happens.
Mistakes made in a program are called errors, and there are twomain types of errors you’ll experience:
1. Syntax errors
2. Run-time errors
In this section you’ll see some examples of code errors and learn howto use the output Python displays when an error occurs to understandwhat error occurred and which piece of code caused it.

49

https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiRW0ySURab2dsaFQkWnhwNVclTFkjMHBafiYmQiElN3MpQis9dFhJVyIsInQiOiJjaGFwdGVycy8wMy8wMi5tZCAoNzQxOGFhNGVlOWNlYjkxYykiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi83NDE4YWE0ZWU5Y2ViOTFjZWRjMTViMzA2MjQ3YzU2ZDg3ODVjMTJiL2NoYXB0ZXJzLzAzLzAyLm1kIn0=

3.2. Mess Things Up
Syntax Errors
In loose terms, a syntax error occurs when youwrite some code thatisn’t allowed in the Python language. You can create a syntax error bychanging the contents of the hello_world.py script from the last sectionto the following:
print("Hello, world)

In this example, the double quotationmark at the endof "Hello, world"has been removed. Pythonwon’t be able to tell where the string of textends. Save the altered script and then try to run it. What happens?
The code won’t run! IDLE displays an alert box with the followingmessage:
EOL while scanning string literal.

EOL stands for End Of Line, so this message tells you that Pythonread all the way to the end of the line without finding the end of some-thing called a string literal.
A string literal is text contained in-between two double quotationmarks. The text "Hello, world" is an example of a string literal.

Note
For brevity, string literals are often referred to as strings, al-though the term “string” technically has a more general mean-ing in Python. You will learn more about strings in Chapter 4.

Back in the script window, notice that the line containing with "Hello,

world is highlighted in red. This handy features helps you quickly findwhich line of code caused the syntax error.
Run-time Errors
IDLE catches syntax errors before a program starts running, but someerrors can’t be caught until a program is executed. These errors are

50

3.2. Mess Things Up
known as run-time errors because they only occur at the time thata program is run.
To generate a run-time error, change the code in hello_world.py to thefollowing:
print(Hello, world)

Now both quotation marks from the phrase "Hello, world" have beenremoved. Did you notice how the text color changes to black whenyou removed the quotation marks? IDLE no longer recognizes Hello,

world as a string.
What do you think happens when you run the script? Try it out andsee!
Some red text is displayed in the interactive window:
Traceback (most recent call last):

File "/home/hello_world.py", line 1, in <module>

print(Hello, world)

NameError: name 'Hello' is not defined

What happened? While trying to execute the program Python raisedan error. Whenever an error occurs, Python stops executing the pro-gram and displays the error in IDLE’s interactive window.
The text that gets displayed for an error is called a traceback. Trace-backs give you some useful information about the error. The trace-back above tells us all of the following:
• The error happened on line 1 of the hello_world.py.
• The line that generated the error was: print(Hello, world).
• A NameError occurred.
• The specific error was name 'Hello' is not defined

The quotation marks around Hello, world are missing, so Pythondoesn’t understand that it is a string of text. Instead, Python thinks
51

3.3. Create a Variable
that Hello and world are the names of something else in the code.Since names Hello and world haven’t been defined anywhere, theprogram crashes.
In the next section, you’ll see how to define names for values in yourcode. Before you move on though, you can get some practice withsyntax errors and run-time errors by working on the review exercises.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Write a script that IDLE won’t let you run because it has a syntaxerror.
2. Write a script that only crashes your program once it is alreadyrunning because it has a run-time error.
Leave feedback on this section »

3.3 Create a Variable
In Python, variables are names that can be assigned a value and usedto reference that value throughout your code. Variables are funda-mental to programming for two reasons:
1. Variables keep values accessible: For example, the result ofsome time-consuming operation can be assigned to a variable sothat the operation does not need to be performed each time youneed to use the result.
2. Variables give values context: The number 28 couldmean lotsof different things, such as the number of students in a class, or thenumber of times a user has accessed a website, and so on. Namingthe value 28 something like num_studentsmakes the meaning of thevalue clear.

52

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiazZVK3NUcHVhQkFLSEgwJntJdnVYSX1CfDVTTiphUmRuI0NxLT5WUiIsInQiOiJjaGFwdGVycy8wMy8wMy5tZCAoOGM3MGQ3NjBiMmY1MzU4ZSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi84YzcwZDc2MGIyZjUzNThlZDdkYzEzZmU1YjRlNGViNzA2Yzg5ZWFjL2NoYXB0ZXJzLzAzLzAzLm1kIn0=

3.3. Create a Variable
In this section, you’ll learn how to use variables in your code, aswell assome of the conventions Python programmers follow when choosingnames for variables.
The Assignment Operator
Values are assigned to a variable using a special symbol = called theassignment operator. An operator is a symbol, like = or +, thatperforms some operation on one or more values.
For example, the + operator takes two numbers, one to the left of theoperator and one to the right, and adds them together. Likewise, the
= operator takes a value to the right of the operator and assigns it tothe name on the left of the operator.
To see the assignment operator in action, let’s modify the “Hello,world” program you saw in the last section. This time, we’ll use avariable to store some text before printing it to the screen:
>>> phrase = "Hello, world"

>>> print(phrase)

Hello, world

In the first line, a variable named phrase is created and assigned thevalue "Hello, world"using the = operator. The string "Hello, world" thatwas originally used inside of the parentheses in the print() function isreplaced with the variable phrase.
The output Hello, world is displayed when you execute print(phrase)because Python looks up the name phrase and finds it has been as-signed the value "Hello, world".
If you hadn’t executed phrase = "Hello, world" before executing
print(phrase), you would have seen a NameError like you did whentrying to execute print(Hello, world) in the previous section.

53

3.3. Create a Variable
Note
Although = looks like the equals sign from mathematics, it hasa different meaning in Python. Distinguishing the = operatorfrom the equals sign is important, and can be a source of frus-tration for beginner programmers.
Just remember, whenever you see the = operator, whatever is tothe right of it is being assigned to a variable on the left.

Variable names are case-sensitive, so a variable named phrase is dis-tinct from a variable named Phrase (note the capital P). For instance,the following code produces a NameError:
>>> phrase = "Hello, world"

>>> print(Phrase)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'Phrase' is not defined

When you run into trouble with the code examples in this book, besure to double-check that every character in your code—includingspaces—exactly matches the examples. Computers can’t use commonsense to interpret what you meant to say, so being almost correctwon’t get a computer to do the right thing!
Rules for Valid Variable Names
Variable names can be as long or as short as you like, but there are acouple of rules that youmust follow. Variable names can only containuppercase and lowercase letters (A–Z, a–z), digits (0–9), and under-scores (_). However, variable names cannot begin with a digit.
For example, phrase, string1, _a1p4a, and list_of_names are all valid vari-able names, but 9lives is not.

54

3.3. Create a Variable
Note
Python variable names can contain many different valid Uni-code characters. Unicode is a standard for digitally represent-ing text used in most of the world’s writing systems.
That means variable names can contain letters from non-English alphabets, such as decorated letters like é and ü, andeven Chinese, Japanese, and Arabic symbols.
However, not every system can display decorated characters, soit is a good idea to avoid them if your code is going to be sharedwith people in many different regions.
You can learnmore about Unicode onWikipedia. Python’s sup-port for Unicode is covered in the official Python documenta-tion.

Just because a variable name is valid doesn’t necessarily mean that itis a good name. Choosing a good name for a variable can be surpris-ingly difficult. However, there are some guidelines that you can followto help you choose better names.
Descriptive Names Are Better Than Short Names
Descriptive variable names are essential, especially for complex pro-grams. Often, descriptive names require using multiple words. Don’tbe afraid to use long variable names.
In the following example, the value 3600 is assigned to the variable s:
s = 3600

Thename s is totally ambiguous. Using a full wordmakes it a lot easierto understand what the code means:
seconds = 3600

seconds is a better name than s because it provides more context. But

55

https://en.wikipedia.org/wiki/Unicode
https://docs.python.org/3/howto/unicode.html#python-s-unicode-support
https://docs.python.org/3/howto/unicode.html#python-s-unicode-support

3.3. Create a Variable
it still doesn’t convey the full meaning of the code. Is 3600 the numberof seconds it takes for some process to finish, or the length of amovie?There’s no way to tell.
The following name leaves no doubt about what the code means:
seconds_per_hour = 3600

When you read the above code, there is no question that 3600 is thenumber of seconds in one hour. Although seconds_per_hour takeslonger to type than both the single letter s and the word seconds, thepay-off in clarity is massive.
Although naming variables descriptively means using longer variablenames, you should avoid names that are excessively long. What “ex-cessively long” really means is subjective, but a good rule of thumb isto keep variable names to fewer than three or four words.
Python Variable Naming Conventions
In many programming languages, it is common to write variablenames in camelCase like numStudents and listOfNames. The first letterof every word, except the first, is capitalized, and all other letters arelowercase. The juxtaposition of lower-case and upper-case letterslook like humps on a camel.
In Python, however, it is more common to write variable names insnake case like num_students and list_of_names. Every letter is lower-case, and each word is separated by an underscore.
While there is no hard-and-fast rule mandating that you write yourvariable names in snake case, the practice is codified in a documentcalled PEP 8, which is widely regarded as the official style guide forwriting Python.
Following the standards outlined in PEP 8 ensures that your Pythoncode is readable by a large number of Python programmers. Thismakes sharing and collaborating on code easier for everyone involved.

56

https://pep8.org

3.4. Inspect Values in the Interactive Window
Note
All of the code examples in this course follow PEP 8 guidelines,so youwill get a lot of exposure towhat Python code that followsstandard formatting guidelines looks like.

In this section you learned how to create a variable, rules for valid vari-able names, and some guidelines for choosing good variable names.Next, you will learn how to inspect a variable’s value in IDLE’s inter-active window.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Using the interactive window, display some text on the screen byusing the print() function.
2. Using the interactive window, display a string of text by saving thestring to a variable, then reference the string in a print() functionusing the variable name.
3. Do each of the first two exercises again by first saving your code ina script and running it.
Leave feedback on this section »

3.4 Inspect Values in the InteractiveWindow
You have already seen how to use print() to display a string that hasbeen assigned to a variable. There is another way to display the valueof a variable when you are working in the Python shell.
Type the following into IDLE’s interactive window:

57

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiWXZ-QCV6bGxPQGd6SGJIPDE0d1c-b3x6JW1AVkgyVlRMYCZeekRnPSIsInQiOiJjaGFwdGVycy8wMy8wNC5tZCAoYzc2YjYyNWNhZDI4MDE3NikiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi9jNzZiNjI1Y2FkMjgwMTc2ZmVmNDlkMTIyZDU5NTkxOTY0NGQzMDczL2NoYXB0ZXJzLzAzLzA0Lm1kIn0=

3.4. Inspect Values in the Interactive Window
>>> phrase = "Hello, world"

>>> phrase

When you press Enter after typing phrase a second time, the followingoutput is displayed:
'Hello, world'

Python prints the string "Hello, world", and you didn’t have to type
print(phrase)!
Now type the following:
>>> print(phrase)

This time, when you hit Enter you see:
Hello, world

Do you see the difference between this output and the output of sim-ply typing phrase? It doesn’t have any single quotes surrounding it.What’s going on here?
When you type phrase and press Enter, you are telling Python to in-spect the variable phrase. The output displayed is a useful represen-tation of the value assigned to the variable.
In this case, phrase is assigned the string "Hello, world", so the outputis surrounded with single quotes to indicate that phrase is a string.
On the other hand, when you print() a variable, Python displays amore human-readable representation of the variable’s value. Forstrings, both ways of being displayed are human-readable, but this isnot the case for every type of value.
Sometimes, both printing and inspecting a variable produces thesame output:

58

3.4. Inspect Values in the Interactive Window
>>> x = 2

>>> x

2

>>> print(x)

2

Here, x is assigned to the number 2. Both the output of print(x) andinspecting x is not surrounded with quotes, because 2 is a number andnot a string.
Inspecting a variable, instead of printing it, is useful for a couple ofreasons. You canuse it to display the value of a variablewithout typing
print(). More importantly, though, inspecting a variable usually givesyou more useful information than print() does.
Suppose youhave two variables: x = 2 and y = "2". In this case, print(x)and print(y) both display the same thing. However, inspecting x and
y shows the difference between the each variable’s value:
>>> x = 2

>>> y = "2"

>>> print(x)

2

>>> print(y)

2

>>> x

2

>>> y

'2'

The key takeaway here is that print() displays a readable representa-tion of a variable’s value, while inspection provides additional infor-mation about the type of the value.
You can inspect more than just variables in the Python shell. Checkout what happens when you type print and hit Enter:

59

3.5. Leave Yourself Helpful Notes
>>> print

<built-in function print>

Keep inmind that you can only inspect variables in a Python shell. Forexample, save and run the following script:
phrase = "Hello, world"

phrase

The script executes without any errors, but no output is displayed!Throughout this book, you will see examples that use the interactivewindow to inspect variables.
Leave feedback on this section »

3.5 Leave Yourself Helpful Notes
Programmers often read code theywrote severalmonths ago andwon-der “What the heck does this do?” Even with descriptive variablenames, it can be difficult to remember why you wrote something theway you did when you haven’t looked at it for a long time.
To help avoid this problem, you can leave comments in your code.Comments are lines of text that don’t affect the way the script runs.They help to document what’s supposed to be happening.
In this section, you will learn three ways to leave comments in yourcode. You will also learn some conventions for formatting comments,as well as some pet peeves regarding their over-use.
How toWrite a Comment
The most common way to write a comment is to begin a new line inyour code with the # character. When your code is run, any lines start-ing with # are ignored. Comments that start on a new line are calledblock comments.

60

https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiRHc-a19DIUpzeT96P05maFdXO0pJbFhmPXNxbUJMdD1VOFFDJWQwSiIsInQiOiJjaGFwdGVycy8wMy8wNS5tZCAoMGNjY2IyODIzMGM5MjQ5ZSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi8wY2NjYjI4MjMwYzkyNDllZTAxZTY5MjQ0MzlhYTIwZWFiNzJlODEyL2NoYXB0ZXJzLzAzLzA1Lm1kIn0=

3.5. Leave Yourself Helpful Notes
You can also write in-line comments, which are comments that ap-pear on the same line as some code. Just put a # at the end of the lineof code, followed by the text in your comment.
Here is an example of the hello_world.py script with both kinds of com-ments added in:
This is a block comment.

phrase = "Hello, world."

print(phrase) # This is an in-line comment.

The first line doesn’t do anything, because it starts with a #. Likewise,
print(phrase) is executed on the last line, but everything after the # isignored.
Of course, you can still use the # symbol inside of a string. For instance,Python won’t mistake the following for the start of a comment:
print("#1")

In general, it’s a good idea to keep comments as short as possible, butsometimes you need to write more than will reasonably fit on a singleline. In that case, you can continue your comment on a new line thatalso begins with a # symbol:
This is my first script.

It prints the phrase "Hello, world."

The comments are longer than the script!

phrase = "Hello, world."

print(phrase)

Besides leaving yourself notes, comments can also be used to com-ment out code while you’re testing a program. In other words,adding a # at the beginning of a line of code lets you run your programas if that line of code didn’t exist without having to delete any code.
To comment out a section of code in IDLEhighlight one oremore lines

61

3.5. Leave Yourself Helpful Notes
to be commented and press:
• Windows: Alt + 3

• macOS: Ctrl + 3

• Ubuntu Linux:: Ctrl + D

Two # symbols are inserted at the beginning of each line. This doesn’tfollow PEP 8 comment formatting conventions, but it gets the jobdone!
To un-comment out your code and remove the # symbols from thebeginning of each line, highlight the code that is commented out andpress:
• Windows: Alt + 4

• macOS: Ctrl + 4

• Ubuntu Linux: Ctrl + Shift + D

Now let’s look at some common conventions regarded code com-ments.
Conventions and Pet Peeves
According to PEP 8, comments should always be written in completesentences with a single space between the # and the first word of thecomment:
This comment is formatted to PEP 8.

#don't do this

For in-line comments, PEP8 recommends at least two spaces betweenthe code and the # symbol:
phrase = "Hello, world" # This comment is PEP 8 compliant.

print(phrase)# This comment isn't.

A major pet peeve among programmers are comments that describe
62

https://pep8.org/#comments

3.6. Summary and Additional Resources
what is already obvious from reading the code. For example, the fol-lowing comment is unnecessary:
Print "Hello, world"

print("Hello, world")

No comment is needed in this example because the code itself explic-itly describes what is being done. Comments are best used to clarifycode thatmay not be easy to understand, or to explain why somethingis done a certain way.
In general, PEP 8 recommends that comments be used sparingly. Usecomments only when they add value to your code by making it easierto understand why something is done a certain way. Comments thatdescribe what something does can often be avoided by using moredescriptive variable names.
Leave feedback on this section »

3.6 Summary and Additional Resources
In this chapter, you wrote and executed your first Python program!You wrote a small program that displays the text "Hello, world" usingthe print() function.
You were introduced to three concepts:
1. Variables give names to values in your code using the assignmentoperator (=)
2. Errors, such as syntax errors and run-time errors, are raisedwhenever Python can’t execute your code. They are displayed inIDLE’s interactive window in the form of a traceback.
3. Comments are lines of code that don’t get executed and serve asdocumentation for yourself and other programmers that need toread your code.

63

https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiOWNfOUE8O3VBPlcyTCtIZm1uMllWenpwe1chQWZgJGR2PTNHSFR0dyIsInQiOiJjaGFwdGVycy8wMy8wNi5tZCAoMzViMjk1ZDBlNTUzZTcyMikiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi8zNWIyOTVkMGU1NTNlNzIyNWUxZjg3MzQ3OGZlNTEwZDRkZjRiNWRmL2NoYXB0ZXJzLzAzLzA2Lm1kIn0=

3.6. Summary and Additional Resources
Interactive Quiz
This chapter comes with a free online quiz to check your learn-ing progress. You can access the quiz using your phone or com-puter at the following web address:
realpython.com/quizzes/python-basics-3

Additional Resources
To learn more, check out the following resources:
• 11 Beginner Tips for Learning Python Programming
• Writing Comments in Python (Guide)
• Recommended resources on realpython.com

Leave feedback on this section »

64

https://realpython.com/quizzes/python-basics-3/
https://realpython.com/python-beginner-tips/
https://realpython.com/python-comments-guide/
https://realpython.com/python-basics/resources/#recommended-resources
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiajxOZnRacDFYWFdoKGFRcUd1JVNSVVhoYXhqPnEzaHd0OVZSV0c5PyIsInQiOiJjaGFwdGVycy8wMy8wNy5tZCAoNTljNjBmOTk0NjEyODdiNCkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi81OWM2MGY5OTQ2MTI4N2I0ZWJiYTU4ZWFiMDAzOWZiZTRkNWY2NzA0L2NoYXB0ZXJzLzAzLzA3Lm1kIn0=

