
17.2. Use matplotlib for Plotting Graphs
If you have ever created graphs in MATLAB, you will find that matplotlibin many ways directly emulates this experience. The similarities be-tween MATLAB and matplotlib are intentional. The MATLAB plotting inter-face was a direct inspiration for matplotlib. Even if you haven’t used
MATLAB, you will likely find creating plots with matplotlib to be simpleand straightforward.
Let’s dive in!
Install matplotlib
You can install matplotlib from your terminal with pip3:
pip3 install matplotlib

You can then view some details about the package with pip3 show:
$ pip3 show matplotlib

Name: matplotlib

Version: 2.2.3

Summary: Python plotting package

Home-page: http://matplotlib.org

Author: John D. Hunter, Michael Droettboom

Author-email: matplotlib-users@python.org

License: BSD

Location: c:\realpython\venv\lib\site-packages

Requires: python-dateutil, pytz, kiwisolver, numpy,

cycler, six, pyparsing

Required-by:

In particular, note that the latest version at the time of writing is ver-sion 2.2.3.
Basic Plotting With pyplot

The matplotlib package provides two distinct means of creating plots.The first, and simplest, method is through the pyplot interface. Thisis the interface that MATLAB users will find the most familiar.
508

17.2. Use matplotlib for Plotting Graphs
The secondmethod for plotting in matplotlib is throughwhat is knownas the object oriented API. The object-oriented approach offers morecontrol over your plots than is available through the pyplot interface.However, the concepts are generally more abstract.
In this section, you’ll learn how to get up and running with the pyplotinterface. You’ll be pumping out some great looking plots in no time!

Note
The developers of matplotlib suggest you try to use the object-oriented API instead of the pyplot interface. In practice, if the
pyplot interface offers you everything you need, then don’t beashamed to stick with it!
That said, if you are interested in learning more about theobject-oriented approach, check out Real Python’s PythonPlotting With Matplotlib (Guide).

Let’s start by creating a simple plot. Open IDLE and run the followingscript:
from matplotlib import pyplot as plt

plt.plot([1, 2, 3, 4, 5])

plt.show()

A new window appears displaying the following plot:

509

https://matplotlib.org/tutorials/introductory/lifecycle.html#a-note-on-the-object-oriented-api-vs-pyplot
https://realpython.com/python-matplotlib-guide/
https://realpython.com/python-matplotlib-guide/

17.2. Use matplotlib for Plotting Graphs

In this simple script, you created a plot with just a single line of code.The line plt.plot([1, 2, 3, 4, 5]) creates a plot with a line throughthe points (0, 1), (1, 2), (2, 3), (3, 4), and (4, 5). The list [1, 2, 3, 4, 5]that you passed to the plt.plot() function represents the y-values ofthe points in the plot. Since you didn’t specify any x-values, matplotlibautomatically uses the indices of the list elements which, since Pythonstarts counting at 0, are 0, 1, 2, 3 and 4.
The plt.plot() function creates a plot, but it does not display anything.The plot.show() function must be called to display the plot.

510

17.2. Use matplotlib for Plotting Graphs
Note
If you are working in Windows, you should have no problemrecreating the above plot from IDLE’s interactive window.However, some operating systems have trouble displayingplots with plot.show() when called from the interactive window.We recommend working through each example in a new script.
If plt.show() works from the interactive window on your ma-chine and you decide to follow along that way, be aware thatonce the figure is displayed in the new window, control isn’treturned to the interactive window until you close the figure’swindow. That is, you won’t see a new >>> prompt until the fig-ure’s window has been closed.

You can specify the x-values for the points in your plot by passing twolists to the plt.plot() function. When two arguments are providedto plt.plot(), the first list specifies the x-values and the second listspecifies the y-values:
from matplotlib import pyplot as plt

xs = [1, 2, 3, 4, 5]

ys = [2, 4, 6, 8, 10]

plt.plot(xs, ys)

plt.show()

Running the above script produces the following plot:

511

17.2. Use matplotlib for Plotting Graphs

At first glance, this figure may look exactly like the first. However,the labels on the axes now reflect the new x- and y-coordinates of thepoints.
You can use plot() to plot more than lines. In the graphs above, thepoints being plotted just happen to all fall on the same line. By default,when plotting points with .plot(), each pair of consecutive points be-ing plotted is connected with a line segment.
The following plot displays some data that doesn’t fall on a line:
from matplotlib import pyplot as plt

xs = [1, 2, 3, 4, 5]

ys = [3, -1, 4, 0, 6]

plt.plot(xs, ys)

plt.show()

512

17.2. Use matplotlib for Plotting Graphs

There is an optional “formatting” argument that can be inserted into
plot() after specifying the points to be plotted. This argument speci-fies the color and style of lines or points to draw.
Unfortunately, the standard is borrowed from MATLAB and (com-pared to most Python) the formatting is not very intuitive to read orremember. The default value is “solid blue line,” which would be rep-resented by the format string b-. If we wanted to plot green circulardots connected by solid lines instead, we would use the format string
g-o like so:
from matplotlib import pyplot as plt

plt.plot([2, 4, 6, 8, 10], "g-o")

plt.show()

513

17.2. Use matplotlib for Plotting Graphs

Note
For reference, the full list of possible formatting combinationscan be found here.

514

http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot

17.2. Use matplotlib for Plotting Graphs

Plot Multiple Graphs in the SameWindow
If you need to plot multiple graphs in the same window, you can doso a few different ways.
You can pass multiple pairs of x- and y-value lists:
from matplotlib import pyplot as plt

xs = [0, 1, 2, 3, 4]

y1 = [1, 2, 3, 4, 5]

y2 = [1, 2, 4, 8, 16]

plt.plot(xs, y1, xs, y2)

plt.show()

515

17.2. Use matplotlib for Plotting Graphs

Notice that each graph is displayed in a different color. This built-infunctionality of the plot() function is convenient for making easy-to-read plots very quickly.
If you want to control the style of each graph, you can pass the format-ting strings to the plot() in addition to the x- and y-values:
from matplotlib import pyplot as plt

xs = [0, 1, 2, 3, 4]

y1 = [1, 2, 3, 4, 5]

y2 = [1, 2, 4, 8, 16]

plt.plot(xs, y1, "g-o", xs, y2, "b-^")

plt.show()

516

17.2. Use matplotlib for Plotting Graphs

Passing multiple sets of points to plot()may work well when you onlyhave a couple of graphs to display, but if you need to show many, itmight make more sense to display each one with its own plot() func-tion.
For example, the following script displays the same plot as the previ-ous example:
from matplotlib import pyplot as plt

plt.plot([1, 2, 3, 4, 5], "g-o")

plt.plot([1, 2, 4, 8, 16], "b-^")

plt.show()

Plot Data From NumPy Arrays
Up to this point, you have been storing your data points in purePython lists. In the real world, you will most likely be using some-

517

17.2. Use matplotlib for Plotting Graphs
thing like a NumPy array to store your data. Fortunately, matplotlibplays nicely with array objects.

Note
If you do not currently have NumPy installed, you need to in-stall it with pip. For more information, please refer to the pre-vious section in this chapter.

For example, instead of a list, you can use NumPy’s arange() functionto define your data points and then pass the resulting array object tothe plot() function:
from matplotlib import pyplot as plt

import numpy as np

array = np.arange(1, 6)

plt.plot(array)

plt.show()

518

17.2. Use matplotlib for Plotting Graphs

Passing a two-dimensional array plots each column of the array as they-values for a graph. For example, the following script plots four lines:
from matplotlib import pyplot as plt

import numpy as np

data = np.arange(1, 21).reshape(5, 4)

data now contains the following array:

array([[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12],

[13, 14, 15, 16],

[17, 18, 19, 20]])

plt.plot(data)

plt.show()

519

17.2. Use matplotlib for Plotting Graphs

If instead you want to plot the rows of the matrix, you need to plot thetranspose of the array. The following script plots the five rows of thesame array from the previous example:
from matplotlib import pyplot as plt

import numpy as np

data = np.arange(1, 21).reshape(5, 4)

plt.plot(data.transpose())

plt.show()

520

17.2. Use matplotlib for Plotting Graphs

Format Your Plots to Perfection
So far, the plots you have seen don’t provide any information aboutwhat the plot represents. In this section, you will learn how to changethe format and layout of your plots tomake them easier to understand.
Let’s start by plotting the amount of Python learned in the first 20days of reading Real Python versus another website:
from matplotlib import pyplot as plt

import numpy as np

days = np.arange(0, 21)

other_site = np.arange(0, 21)

real_python = other_site ** 2

plt.plot(days, other_site)

plt.plot(days, real_python)

plt.show()

521

17.2. Use matplotlib for Plotting Graphs

As you can see, the gains from reading Real Python are exponential!However, if you showed this graph to someone else, they may not un-derstand what’s going on.
First of all, the x-axis is a little weird. It is supposed to represent daysbut is displaying half days instead. It would also be helpful to knowwhat each line and axis represents. A title describing the plot wouldn’thurt, either.
Let’s start with adjusting the x-axis. You can use the plt.xticks() func-tion to specify where the ticks should be located by passing a list oflocations. If we pass the list [0, 5, 10, 15, 20], the ticks should markdays 0, 5, 10, 15 and 20:
from matplotlib import pyplot as plt

import numpy as np

522

17.2. Use matplotlib for Plotting Graphs
days = np.arange(0, 21)

other_site = np.arange(0, 21)

real_python = other_site ** 2

plt.plot(days, other_site)

plt.plot(days, real_python)

plt.xticks([0, 5, 10, 15, 20])

plt.show()

Nice! That’s a little easier to read, but it still isn’t clear what each axisrepresents.
You can use the plt.xlabel() and plt.ylabel() to label the x- and y-axes,respectively. Just provide a string as an argument, and matplotlib dis-plays the label on the corresponding axis.
While we’re labeling things, let’s go ahead and give the plot a title withthe plt.title() function:

523

17.2. Use matplotlib for Plotting Graphs
from matplotlib import pyplot as plt

import numpy as np

days = np.arange(0, 21)

other_site = np.arange(0, 21)

real_python = other_site ** 2

plt.plot(days, other_site)

plt.plot(days, real_python)

plt.xticks([0, 5, 10, 15, 20])

plt.xlabel("Days of Reading")

plt.ylabel("Amount of Python Learned")

plt.title("Python Learned Reading Real Python vs Other Site")

plt.show()

Now we’re starting to get somewhere!

524

17.2. Use matplotlib for Plotting Graphs
There’s only one problem. It’s not clear which graph represents RealPython and which one represents the other website.
To clarify which graph is which, you can add a legend with the
plt.legend() function. The primary argument of the legend() functionis a list of strings identifying each graph in the plot. These stringsmust be ordered in the same order the graphs were added to the plot:
from matplotlib import pyplot as plt

import numpy as np

days = np.arange(0, 21)

other_site = np.arange(0, 21)

real_python = other_site ** 2

plt.plot(days, other_site)

plt.plot(days, real_python)

plt.xticks([0, 5, 10, 15, 20])

plt.xlabel("Days of Reading")

plt.ylabel("Amount of Python Learned")

plt.title("Python Learned Reading Real Python vs Other Site")

plt.legend(["Other Site", "Real Python"])

plt.show()

525

17.2. Use matplotlib for Plotting Graphs

Note
There are many ways to customize legends. For more informa-tion, check out the Legend Guide in the matplotlib documenta-tion.

Other Types of Plots
Aside from line charts, which up until now you have seen exclusively,
matplotlib provides simple methods for creating other kinds of charts.
One frequently used type of plot in basic data visualization is the barchart. You can easily create bar charts using the plt.bar() function.You must provide at least two arguments to bar(). The first is a list ofx-values for the center point for each bar, and the second is the valuefor the top of each bar:

526

https://matplotlib.org/users/legend_guide.html

17.2. Use matplotlib for Plotting Graphs
from matplotlib import pyplot as plt

xs = [1, 2, 3, 4, 5]

tops = [2, 4, 6, 8, 10]

plt.bar(xs, tops)

plt.show()

Just like the plot() function, you can use a NumPy array instead of alist. The following script produces a plot identical to the previous one:
from matplotlib import pyplot as plt

import numpy as np

xs = np.arange(1, 6)

tops = np.arange(2, 12, 2)

527

17.2. Use matplotlib for Plotting Graphs

plt.bar(xs, tops)

plt.show()

The bar() function is more flexible than it lets on. For example, thefirst argument doesn’t need to be a list of numbers. It could be a listof strings representing categories of data.
Suppose you wanted to plot a bar chart representing the data con-tained in the following dictionary:
fruits = {

"apples": 10,

"oranges": 16,

"bananas": 9,

"pears": 4,

}

You can get a list of the names of the fruits using fruits.keys(), and thecorresponding values using fruits.values(). Check out what happenswhen you pass these to the bar() function
from matplotlib import pyplot as plt

fruits = {

"apples": 10,

"oranges": 16,

"bananas": 9,

"pears": 4,

}

plt.bar(fruits.keys(), fruits.values())

plt.show()

528

17.2. Use matplotlib for Plotting Graphs

The names of the fruits are conveniently used as the tick labels alongthe x-axis.
Note
Using a list of strings as x-values works for the plot() functionas well, although it often makes less sense to do so.

Another commonly used type of graph is the histogram, which showshow data is distributed. You can make simple histograms easily withthe plt.hist() function. You must supply hist() with a list (or array)of values and a number of bins to use.
For instance, we can create a histogram of 10,000 normally dis-tributed random numbers binned across 20 possible bars with thefollowing, which uses NumPy’s random.randn() function to generatean array of normally distributed random numbers:

529

https://en.wikipedia.org/wiki/Histogram

17.2. Use matplotlib for Plotting Graphs
from matplotlib import pyplot as plt

from numpy import random

plt.hist(random.randn(10000), 20)

plt.show()

Note
For a detailed discussion of creating histograms with Python,check out PythonHistogramPlotting: NumPy,Matplotlib, Pan-das & Seaborn on Real Python.

Save Figures as Images
You may have noticed that the window displaying your plots has atoolbar at the bottom. You can use this toolbar to save your plot as animage file.

530

https://realpython.com/python-histograms/
https://realpython.com/python-histograms/
https://realpython.com

17.2. Use matplotlib for Plotting Graphs
More often than not, you probably don’t want to have to sit at yourcomputer and click on the save button for each plot youwant to export.Fortunately, matplotlib makes it easy to save your plots programmat-ically.
To save your plot, use the plt.savefig() function. Pass the path towhere you would like to save your plot as a string. The example be-low saves a simple bar chart as bar.png to the current working direc-tory. If you would like to save to somewhere else, you must providean absolute path.
from matplotlib import pyplot as plt

import numpy as np

xs = np.arange(1, 6)

tops = np.arange(2, 12, 2)

plt.bar(xs, tops)

plt.savefig("bar.png")

Note
If you want to both save a figure and display it on the screen,make sure that you save it first before displaying it!
The show() function pauses execution of your code and closingthe display window destroys the graph, so trying to save the fig-ure after calling show() results in an empty file.

WorkWith Plots Interactively
When you are initially tweaking the layout and formatting of a par-ticular graph, it can be helpful to change parts of the graph withouthaving to re-run an entire script just to see the results.
One of the easiest ways to do this is with a Jupyter Notebook, whichcreates an interactive Python interpreter session that runs in your

531

https://jupyter.org/

17.2. Use matplotlib for Plotting Graphs
browser.
Jupyter notebooks have become a staple for interacting with and ex-ploring data, and work great with both NumPy and matplotlib.
For an interactive tutorial on how to use Jupyter Notebooks, checkout Jupyter’s IPython In Depth tutorial.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Recreate asmany of the graphs shown in this section as you can bywriting your own scripts without referring to the provided code.
2. It is awell-documented fact that the number of pirates in theworldis correlated with a rise in global temperatures. Write a script

pirates.py that visually examines this relationship:• Read in the file pirates.csv from the Chapter 17 practice filesfolder.
• Create a line graph of the averageworld temperature in degreesCelsius as a function of the number of pirates in the world—that is, graph Pirates along the x-axis and Temperature alongthe y-axis.
• Add a graph title and label your graph’s axes.
• Save the resulting graph out as a PNG image file.
• Bonus: Label each point on the graph with the appropriateYear. You should do this programmatically by looping throughthe actual data points rather than specifying the individual po-sition of each annotation.

Leave feedback on this section »

532

https://mybinder.org/v2/gh/ipython/ipython-in-depth/master?filepath=binder%2FIndex.ipynb
https://realpython.com/python-basics/resources/
http://www.venganza.org/2008/04/pirates-temperature/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiV0ElZzVYd3V7OHs1WExgNiN5O3lOekJBcVdxQ2IlYm97WkdpbVdgRyIsInQiOiJjaGFwdGVycy8xNy8wMy5tZCAoZjEwNWQ5MWU4MGMwM2MyYykiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi9mMTA1ZDkxZTgwYzAzYzJjYjIzZTI4NDI0MmI1ZDk1MzMzOWI2NDM0L2NoYXB0ZXJzLzE3LzAzLm1kIn0=

