
6.4. Run in Circles
The script should first prompt the user to enter a temperature in de-grees Fahrenheit and then display the temperature converted to Cel-sius.
Then prompt the user to enter a temperature in degrees Celsius anddisplay the temperature converted to Fahrenheit.
All converted temperatures should be rounded to 2 decimal places.
Here’s a sample run of the program:
Enter a temperature in degrees F: 72

72 degrees F = 22.22 degrees C

Enter a temperature in degrees C: 37

37 degrees C = 98.60 degrees F

You can пnd the solutions to this code challenge andmany other bonusresources online at realpython.com/python-basics/resources.
Leave feedback on this section »

6.4 Run in Circles
One of the great things about computers is that you can make themdo the same thing over and over again, and they rarely complain orget tired.
A loop is a block of code that gets repeated over and over again eithera specified number of times or until some condition is met. Thereare two kinds of loops in Python: while loops and for loops. In thissection, you’ll learn how to use both.
Let’s start by looking at how while loops work.

150

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiR3BZJkk0c3Q2dmIqLUZgNTV6WV9QLTUwOWp1N0dycXhfXzVrM1JgSiIsInQiOiJjaGFwdGVycy8wNi8wNC5tZCAoODI5NzI1YjIxN2QwOTc3ZSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi84Mjk3MjViMjE3ZDA5NzdlM2Y2Y2Q0ZTI4ZDk4MjFkOWRmZjQ3MTEyL2NoYXB0ZXJzLzA2LzA0Lm1kIn0=


6.4. Run in Circles
The while Loop
while loops repeat a section of code while some condition is true.There are two parts to every while loop:
1. The while statement starts with the while keyword, followed by atest condition, and ends with a colon (:).
2. The loop body contains the code that gets repeated at each stepof the loop. Each line is indented four spaces.
When a while loop is executed, Python evaluates the test condition anddetermines if it is true or false. If the test condition is true, then thecode in the loop body is executed. Otherwise, the code in the body isskipped and the rest of the program is executed.
If the test condition is true and the body of the loop is executed, thenonce Python reaches the end of the body, it returns to the while state-ment and re-evaluates the test condition. If the test condition is stilltrue, the body is executed again. If it is false, the body is skipped.
This process repeats over and over until the test condition fails, caus-ing Python to loop over the code in the body of the while loop.
Let’s look at an example. Type the following code into the interactivewindow:
>>> n = 1

>>> while n < 5:

... print(n)

... n = n + 1

...

1

2

3

4

First, the integer 1 is assigned to the variable n. Then a while loop iscreated with the test condition n < 5, which checks whether or not thevalue of n is less than 5.
151



6.4. Run in Circles
If n is less than 5, the body of the loop is executed. There are two linesof code in the loop body. In the first line, the value of n is printed onthe screen, and then n is incremented by 1 in the second line.
The loop execution takes place in five steps, described in the followingtable:
Step # Value of n Test Condition What Happens

1 1 1 < 5 (true) 1 printed; n incremented to 22 2 2 < 5 (true) 2 printed; n incremented to 33 3 3 < 5 (true) 3 printed; n incremented to 44 4 4 < 5 (true) 4 printed; n incremented to 55 5 5 < 5 (false) Nothing printed; loop ends.

If you aren’t careful, you can create an inрnite loop. This happenswhen the test condition is always true. An infinite loop never termi-nates. The loop body keeps repeating forever.
Here’s an example of an infinite loop:
>>> n = 1

>>> while n < 5:

... print(n)

...

The only difference between this while loop and the previous one isthat n is never incremented in the loop body. At each step of the loop,
n is equal to 1. That means the test condition n < 5 is always true, andthe number 1 is printed over and over again forever.

152



6.4. Run in Circles
Note
Infinite loops aren’t inherently bad. Sometimes they are exactlythe kind of loop you need.
For example, code that interacts with hardwaremay use an infi-nite loop to constantly check whether or not a button or switchhas been activated.

If you run a program that enters an infinite loop, you can forcePython to quit by pressing Ctrl+C. Python stops running the programand raises a KeyboardInterrupt error:
Traceback (most recent call last):

File "<pyshell#8>", line 2, in <module>

print(n)

KeyboardInterrupt

Let’s look at an example of a while loop in practice. One use of a whileloop is to checkwhether or not user inputmeets some condition and, ifnot, repeatedly ask the user for new input until valid input is received.
For instance, the following program continuously asks a user for apositive number until a positive number is entered:
num = float(input("Enter a positive number: "))

while num <= 0:

print("That's not a positive number!")

num = float(input("Enter a positive number: "))

First, the user is prompted to enter a positive number. The test con-dition num <= 0 determines whether or not num is less than or equal to
0.
If num is positive, then the test condition fails. The body of the loop isskipped and the program ends.
Otherwise, if num is 0 or negative, the body of the loop executes. The

153



6.4. Run in Circles
user is notified that their input was incorrect, and they are promptedagain to enter a positive number.
while loops are perfect for repeating a section of code while some con-dition ismet. They aren’t well-suited, however, for repeating a sectionof code a specific number of times.
The for Loop
A for loop executes a section of code once for each item in a collectionof items. The number of times that the code is executed is determinedby the number of items in the collection.
Like its while counterpart, the for loop has two main parts:
1. The for statement begins with the for keyword, followed by amembership expression, and ends in a colon (:).
2. The loop body contains the code to be executed at each step ofthe loop, and is indented four spaces.
Let’s look at an example. The following for loop prints each letter ofthe string "Python" one at a time:
for letter in "Python":

print(letter)

In this example, the for statement is for letter in "Python". The mem-bership expression is letter in "Python".
At each step of the loop, the variable letter is assigned the next letterin the string "Python", and then the value of letter is printed.
The loops runs once for each character in the string "Python", so theloop body executes six times. The following table summarizes the ex-ecution of this for loop:

Step # Value of letter What Happens
1 "P" P is printed

154



6.4. Run in Circles

Step # Value of letter What Happens
2 "y" y is printed3 "t" t is printed4 "h" h is printed5 "o" o is printed6 "n" n is printed

To see why for loops are better for looping over collections of items,let’s re-write the for loop in previous example as a while loop.
To do so, we can use a variable to store the index of the next characterin the string. At each step of the loop, we’ll print out the character atthe current index and then increment the index.
The loop will stop once the value of the index variable is equal to thelength of the string. Remember, indices start at 0, so the last index ofthe string "Python" is 5.
Here’s how you might write that code:
word = "Python"

index = 0

while index < len(word):

print(word[index])

index = index + 1

That’s significantly more complex than the for loop version!
Not only is the for loop less complex, the code itself looksmorenatural.It more closely resembles how youmight describe the loop in English.

155



6.4. Run in Circles
Note
You may sometimes hear people describe some code as beingparticularly “Pythonic.” The term Pythonic is generally usedto describe code that is clear, concise, and uses Python’s built-infeatures to its advantage.
In these terms, using a for loop to loop over a collection of itemsis more Pythonic than using a while loop.

Sometimes it’s useful to loop over a range of numbers. Python has ahandy built-in function range() that produces just that — a range ofnumbers!
For example, range(3) returns the range of integers starting with 0 andup to, but not including, 3. That is, range(3) is the range of numbers 0,
1, and 2.
You can use range(n), where n is any positive number, to execute a loopexactly n times. For instance, the following for loop prints the string
"Python" three times:
for n in range(3):

print("Python")

You can also give a range a starting point. For example, range(1, 5)is the range of numbers 1, 2, 3, and 4. The first argument is the start-ing number, and the second argument is the endpoint, which is notincluded in the range.
Using the two-argument version of range(), the following for loopprints the square of every number starting with 10 and up to, but notincluding, 20:
for n in range(10, 20):

print(n * n)

Let’s look at a practical example. The following program asks the userto input an amount and then displays how to split that amount be-
156



6.4. Run in Circles
tween 2, 3, 4, and 5 people:
amount = float(input("Enter an amount: "))

for num_people in range(2, 6):

print(f"{num_people} people: ${amount / num_people:,.2f} each")

The for loop loops over the number 2, 3, 4, and 5, and prints the num-ber of people and the amount each person should pay. The format-ting specifier ,.2f is used to format the amount as fixed-point numberrounded to two decimal places and commas every three digits.
Running the programwith the input 10 produces the following output:
Enter an amount: 10

2 people: $5.00 each

3 people: $3.33 each

4 people: $2.50 each

5 people: $2.00 each

for loops are generally used more often than while loops in Python.Most of the time, a for loop is more concise and easier to read than anequivalent while loop.
Nested Loops
As long as you indent the code correctly, you can even put loops insideof other loops.
Type the following into IDLE’s interactive window:
for n in range(1, 4):

for j in range(4, 7):

print(f"n = {n} and j = {j}")

When Python enters the body of the first for loop, the variable n isassigned the value 1. Then the body of the second for loop is executedand j is assigned the value 4. The first thing printed is n = 1 and j = 4.

157



6.4. Run in Circles
After executing the print() function, Python returns to the inner forloop, assigns to j the value of 5, and then prints n = 1 and j = 5. Pythondoesn’t return the outer for loop because the inner for loop, which isinside the body of the outer for loop, isn’t done executing.
Next, j is assigned the value 6 and Python prints n = 1 and j = 6. Atthis point, the inner for loop is done executing, so control returns tothe outer for loop.
The variable n gets assigned the value 2, and the inner for loop executesa second time. That is, j is assigned the value 4 and n = 2 and j = 4 isprinted to the console.
The two loops continue to execute in this fashion, and the final outputlooks like this:
n = 1 and j = 4

n = 1 and j = 5

n = 1 and j = 6

n = 2 and j = 4

n = 2 and j = 5

n = 2 and j = 6

n = 3 and j = 4

n = 3 and j = 5

n = 3 and j = 6

A loop inside of another loop is called a nested loop, and they comeup more often than you might expect. You can nest while loops insideof for loops, and vice versa, and even nest loops more than two levelsdeep!

158



6.4. Run in Circles
Important
Nesting loops inherently increases the complexity of your code,as you can see by the dramatic increase in the number of stepsrun in the previous example compared to exampleswith a single
for loop.
Using nested loops is sometimes the only way to get somethingdone, but too many nested loops can have a negative effect ona program’s performance.

Loops are a powerful tool. They tap into one of the greatest advan-tages computers provide as tools for computation: the ability to re-peat the same task a vast number of times without tiring and withoutcomplaining.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Write a for loop that prints out the integers 2 through 10, each ona new line, by using the range() function.
2. Use a while loop that prints out the integers 2 through 10 (Hint:You’ll need to create a new integer first.)
3. Write a function called doubles() that takes one number as its inputand doubles that number. Then use the doubles() function in aloop to double the number 2 three times, displaying each result ona separate line. Here is some sample output:

4

8

16

Leave feedback on this section »

159

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoieDZwMDtJLT9vTy10YWNwcCFCanlxZyFKTlFXOEFvNCsqM3NkbV9WTSIsInQiOiJjaGFwdGVycy8wNi8wNS5tZCAoNTBhNTRmYTAwNmIzM2FhMCkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi81MGE1NGZhMDA2YjMzYWEwZDhjZGI3MmUwMGNkMDI1ODhhMmYzMjU1L2NoYXB0ZXJzLzA2LzA1Lm1kIn0=

