
9.2. Lists Are Mutable Sequences
In the next section, you’ll learn about a third sequence type with onevery big difference from strings and tuples: mutability.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Create a tuple literal named cardinal_numbers that holds the strings

"first", "second" and "third", in that order.
2. Using index notation and print(), display the string at index 1 in

cardinal_numbers.
3. Unpack the values in cardinal_numbers into three new stringsnamed position1, position2 and position3 in a single line of code,then print each value on a separate line.
4. Create a tuple called my_name that contains the letters of your nameby using tuple() and a string literal.
5. Check whether or not the character "x" is in my_name using the inkeyword.
6. Create a new tuple containing all but the first letter in my_name usingslicing notation.
Leave feedback on this section »

9.2 Lists Are Mutable Sequences
The list data structure is another sequence type in Python. Just likestrings and tuples, lists contain items that are indexed by integers,starting with 0.
On the surface, lists look and behave a lot like tuples. You can useindex and slicing notation with lists, check for the existence of an ele-ment using in, and iterate over lists with a for loop.
Unlike tuples, however, lists are mutable, meaning you can change

241

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoibUozWGUybzVCNXgrdU5NYXktPUkhYjkzZXswUCtjez9PcDtMSzt-VCIsInQiOiJjaGFwdGVycy8wOS8wMi5tZCAoNmFmOTY1MjhmMzU5MjYwOCkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi82YWY5NjUyOGYzNTkyNjA4M2JjNTgwZGE3YzkxZDQ4ZWNlZDIzMWQ1L2NoYXB0ZXJzLzA5LzAyLm1kIn0=

9.2. Lists Are Mutable Sequences
the value at an index even after the list has been created.
In this section, you will learn how to create lists and compare themwith tuples.
Creating Lists
A list literal looks almost exactly like a tuple literal, except that it issurrounded with square brackets ([and]) instead of parentheses:
>>> colors = ["red", "yellow", "green", "blue"]

>>> type(colors)

<class 'list'>

When you inspect a list, Python displays it as a list literal:
>>> colors

['red', 'yellow', 'green', 'blue']

Like tuples, lists values are not required to be of the same type. Thelist literal ["one", 2, 3.0] is perfectly valid.
Aside from list literals, you can also use the list() built-in to create anew list object from any other sequence. For instance, the tuple (1,

2, 3) can be passed to list() to create the list [1, 2, 3]:
>>> list((1, 2, 3))

[1, 2, 3]

You can even create a list from a string:
>>> list("Python")

['P', 'y', 't', 'h', 'o', 'n']

Each letter in the string becomes an element of the list.
There is more useful way to create a list from a string. You can createa list from a string of a comma-separated list of items using the stringobject’s .split() method:

242

9.2. Lists Are Mutable Sequences
>>> groceries = "eggs, milk, cheese"

>>> grocery_list = groceries.split(", ")

>>> grocery_list

['eggs', 'milk', 'cheese']

The string argument passed to .split() is called the separator. Bychanging the separator you can split strings into lists in numerousways:
>>> # Split string on semi-colons

>>> "a;b;c".split(";")

['a', 'b', 'c']

>>> # Split string on spaces

>>> "The quick brown fox".split(" ")

['The', 'quick', 'brown', 'fox']

>>> # Split string on multiple characters

>>> "abbaabba".split("ba")

['ab', 'ab', '']

In the last example above, the string is split around occurrences of thesubstring "ba", which occurs first at index 2 and again at index 6. Theseparator has two characters, only the characters at indices 1, 2, 5, and
6 become elements of the list.
.split() always returns a string whose length is one more than thenumber of separators contained in the string. The string "abbaabba"contains two instances of the separator "ba" so the list returned by
split() has three elements. Since the third separator isn’t followed byany other characters, the third element of the list is set to the emptystring.
If the separator is not contained in the string at all, .split() returns alist with the string as its only element:

243

9.2. Lists Are Mutable Sequences
>>> "abbaabba".split("c")

['abbaabba']

In all, you’ve seen three ways to create a list:
1. A list literal
2. The list() built-in
3. The string .split() method
Lists support the all of the same operations supported by tuples.
Basic List Operations
Indexing and slicing operations work on lists the sameway they do ontuples.
You can access list elements using index notation:
>>> numbers = [1, 2, 3, 4]

>>> numbers[1]

2

You can create a new list from an existing once using slice notation:
>>> numbers[1:3]

[2, 3]

You can check for the existence of list elements using the in operator:
>>> # Check existence of an element

>>> "Bob" in numbers

False

Because lists are iterable, you can iterate over them with a for loop.
>>> # Print only the even numbers in the list

>>> for number in numbers:

... if number % 2 == 0:

244

9.2. Lists Are Mutable Sequences
... print(number)

...

2

4

The major difference between lists and tuples is that elements of listsmay be changed, but elements of tuples can not.
Changing Elements in a List
Think of a list as a sequence of numbered slots. Each slot holds avalue, and every slot must be filled at all times, but you can swap outthe value in a given slot with a new one whenever you want.
The ability to swap values in a list for other values is calledmutabil-ity. Lists are mutable. The elements of tuples may not be swappedfor new values, so tuples are said to be immutable.
To swap a value in a list with another, assign the new value to a slotusing index notation:
>>> colors = ["red", "yellow", "green", "blue"]

>>> colors[0] = "burgundy"

The value at index 0 changes from "red" to "burgundy":
>>> colors

['burgundy', 'yellow', 'green', 'blue']

You can change several values in a list at once with a slice assign-ment:
>>> colors[1:3] = ["orange", "magenta"]

>>> colors

['burgundy', 'orange', 'magenta', 'blue']

colors[1:3] selects the slots with indices 1 and 2. The values in theseslots are assigned to "orange" and "magenta", respectively.

245

9.2. Lists Are Mutable Sequences
The list assigned to a slice does not need to have the same length asthe slice. For instance, you can assign a list of three elements to a slicewith two elements:
>>> colors = ["red", "yellow", "green", "blue"]

>>> colors[1:3] = ["orange", "magenta", "aqua"]

>>> colors

['red', 'orange', 'magenta', 'aqua', 'blue']

The values "orange" and "magenta" replace the original values "yellow"and "green" in colors at the indices 1 and 2. Then a new slot is created atindex 4 and "blue" is assigned to this index. Finally, "aqua" is assignedto index 3.
When the length of the list being assigned to the slice is less than thelength of the slice, the overall length of the original list is reduced:
>>> colors

['red', 'orange', 'magenta', 'aqua', 'blue']

>>> colors[1:4] = ["yellow", "green"]

>>> colors

['red', 'yellow', 'green', 'blue']

The values "yellow" and "green" replace the values "orange" and
"magenta" in colors at the indices 1 and 2. Then the value at index 3 isreplaced with the value "blue". Finally, the slot at index 4 is removedfrom colors entirely.
The above examples showhow to change, ormutate, lists using indexand slice notation. There are also several listmethods that you can useto mutate a list.
List Methods For Adding and Removing Elements
Although you can add and remove elements with slice notation, listmethods provide a more natural and readable way to mutate a list.
We’ll look at several list methods, starting with how to insert a single

246

9.2. Lists Are Mutable Sequences
value into a list at a specified index.
list.insert()

The list.insert() method is used to insert a single new value into alist. It takes two parameters, an index i and a value x, and inserts thevalue x at index i in the list.
>>> colors = ["red", "yellow", "green", "blue"]

>>> # Insert "orange" into the second position

>>> colors.insert(1, "orange")

>>> colors

['red', 'orange', 'yellow', 'green', 'blue']

There are a couple of important observations to make about this ex-ample.
The first observation applies to all list methods. To use them, you firstwrite the name of the list you want to manipulate, followed by a dot(.) and then the name of the list method.
So, to use insert() on the colors list, you must write colors.insert().This works just like string and number methods do.
Next, notice that when the value "orange" is inserted at the index 1, thevalue "yellow" and all following values are shifted to the right.
If the value for the index parameter of .insert() is larger than thegreatest index in the list, the value is inserted at the end of the list:
>>> colors.insert(10, "violet")

>>> colors

['red', 'orange', 'yellow', 'green', 'blue', 'violet']

Here the value "violet" is actually inserted at index 5, even though
.insert() was called with 10 for the index.
You can also use negative indices with .insert():

247

9.2. Lists Are Mutable Sequences
>>> colors.insert(-1, "indigo")

>>> colors

['red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet']

This inserts "indigo" into the slot at index -1 which is the last elementof the list. The value "violet" is shifted to the right by one slot.
Important
When you .insert() an item into a list, you do not need to assignthe result to the original list.
For example, the following code actually erases the colors list:
>>> colors = colors.insert(-1, "indigo")

>>> print(colors)

None

.insert() is said to alter colors in place. This is true for all listmethods that do not return a value.
If you can insert a value at a specified index, it only makes sense thatyou can also remove an element at a specified index.
list.pop()

The list.pop() method takes one parameter, an index i, and removesthe value from the list at that index. The value that is removed is re-turned by the method:
>>> color = colors.pop(3)

>>> color

'green'

>>> colors

['red', 'orange', 'yellow', 'blue', 'indigo', 'violet']

Here, the value "green" at index 3 is removed and and assigned to thevariable color. When you inspect the colors list, you can see that thestring "green" has indeed been removed.
248

9.2. Lists Are Mutable Sequences
Unlike .insert(), Python raises an IndexError if you pass to .pop() anargument larger than the last index:
>>> colors.pop(10)

Traceback (most recent call last):

File "<pyshell#0>", line 1, in <module>

colors.pop(10)

IndexError: pop index out of range

Negative indices also work with .pop():
>>> colors.pop(-1)

'violet'

>>> colors

['red', 'orange', 'yellow', 'blue', 'indigo']

If you do not pass a value to .pop(), it removes the last item in the list:
>>> colors.pop()

'indigo'

>>> colors

['red', 'orange', 'yellow', 'blue']

This way of removing the final element, by calling .pop()with no spec-ified index, is generally considered the most Pythonic.
list.append()

The list.append()method is used to append an new element to the endof a list:
>>> colors.append("indigo")

>>> colors

['red', 'orange', 'yellow', 'blue', 'indigo']

After calling .append(), the length of the list increases by one and thevalue "indigo" is inserted into the final slot. Note that .append() altersthe list in place, just like .insert().

249

9.2. Lists Are Mutable Sequences
.append() is equivalent to inserting an element at an index greater thanor equal to the length of the list. The above example could also havebeen written as follows:
>>> colors.insert(len(colors), "indigo")

.append() is both shorter and more descriptive than using .insert()this way, and is generally considered the more Pythonic way of addedan element to the end of a list.
list.extend()

The list.extend() method is used to add several new elements to theend of a list:
>>> colors.extend(["violet", "ultraviolet"])

>>> colors

['red', 'orange', 'yellow', 'blue', 'indigo', 'violet', 'ultraviolet']

.extend() takes a single parameter that must be an iterable type. Theelements of the iterable are appended to the list in the same order thatthey appear in the argument passed to .extend().
Just like .insert() and .append(), .extend() alters the list in place.
Typically, the argument passed to .extend() is another list, but it couldalso be a tuple. For example, the above example could be written asfollows:
>>> colors.extend(("violet", "ultraviolet"))

The four list methods discussed in this sectionmake up themost com-mon methods used with lists. The following table serves to recap ev-erything you have seen here:
List Method Description
.insert(i, x) Insert the value x at index i

.append(x) Insert the value x at the end of the list

250

9.2. Lists Are Mutable Sequences

List Method Description
.extend(iterable) Insert all the values of iterable at the end of thelist, in order
.pop(i) Remove and return the element at index i

In addition to listmethods, Python has a couple of useful built-in func-tions for working with lists of numbers.
Lists of Numbers
One very common operation with lists of numbers is to add up all thevalues to get the total.
You can do this with a for loop:
>>> nums = [1, 2, 3, 4, 5]

>>> total = 0

>>> for number in nums:

... total = total + number

...

>>> total

15

First you initialize the variable total to 0, and then loop over each num-ber is nums and add it to total, finally arriving at the value 15.
Although this for loop is straightforward, there is a much more suc-cinct way of doing this in Python:
>>> sum([1, 2, 3, 4, 5])

15

The built-in sum() function takes a list as an argument and returns thetotal of all the values in the list.
If the list passed to sum() contains any values that aren’t numeric, a
TypeError is raised:

251

9.2. Lists Are Mutable Sequences
>>> sum([1, 2, 3, "four", 5])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Besides sum(), there are two other useful built-in functions for work-ing with lists of numbers: min() and max(). These functions return theminimum and maximum values in the list, respectively:
>>> min([1, 2, 3, 4, 5])

1

>>> max([1, 2, 3, 4, 5])

5

Note that sum(), min(), and max() also work with tuples:
>>> sum((1, 2, 3, 4, 5))

15

>>> min((1, 2, 3, 4, 5))

1

>>> max((1, 2, 3, 4, 5))

5

The fact that sum(), min(), and max() are all built-in to Python tells youthat they are used frequently. Chances are, you’ll find yourself usingthem quite a bit in your own programs!
List Comprehensions
Yet another way to create a list from an existing iterable is with a listcomprehension:
>>> numbers = (1, 2, 3, 4, 5)

>>> squares = [num**2 for num in numbers]

252

9.2. Lists Are Mutable Sequences
>>> squares

[1, 4, 9, 16, 25]

A list comprehension is a short-hand for a for loop. In the exampleabove, a tuple literal containing five numbers is created and assignedto the numbers variable. On the second line, a list comprehension loopsover each number in numbers, squares each number, and adds it to anew list called squares.
To create the sqaures list using a traditional for loop involves first creat-ing an empty list, looping over the numbers in numbers, and appendingthe square of each number to the list:
>>> squares = []

>>> for num in numbers:

... sqaures.append(num**2)

...

>>> squares

[1, 4, 9, 16, 25]

List comprehensions are commonly used to convert values in one listto a different type.
For instance, suppose you needed to convert a list of strings contain-ing floating point values to a list of float objects. The following listcomprehensions achieves this:
>>> str_numbers = ["1.5", "2.3", "5.25"]

>>> float_numbers = [float(value) for value in str_numbers]

>>> float_numbers

[1.5, 2.3, 5.25]

List comprehensions are not unique to Python, but they are one ofits many beloved features. If you find yourself creating an empty list,looping over some other iterable, and appending new items to the list,then chances are you can replace your codewith a list comprehension!

253

