
Chapter 4
Strings and String Methods
Many programmers, regardless of their specialty, deal with text ona daily basis. For example, web developers work with text that getsinput fromweb forms. Data scientists process text to extract data andperform things like sentiment analysis, which can help identify andclassify opinions in a body of text.
Collections of text in Python are called strings. Special functionscalled string methods are used to manipulate strings. There arestring methods for changing a string from lowercase to uppercase, re-moving whitespace from the beginning or end of a string, or replacingparts of a string with different text, and many more.
In this chapter, you will learn how to:
• Manipulate strings with string methods
• Work with user input
• Deal with strings of numbers
• Format strings for printing

Let’s get started!
Leave feedback on this section »

65

https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiSDxMa0trZyZuQ1c-QEA4QGN6T0JYTFQwPVB1UGdaWFotbn5SUjNrNSIsInQiOiJjaGFwdGVycy8wNC8wMS5tZCAoODk0ZGZhMDZkOGZkYmMzNSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi84OTRkZmEwNmQ4ZmRiYzM1ZWY5MjYwYTdkZWM3MWI1ZTZlMGQ5OTRhL2NoYXB0ZXJzLzA0LzAxLm1kIn0=

4.1. What is a String?
4.1 What is a String?
In Chapter 3, you created the string "Hello, world" and printed it inIDLE’s interactive window using the print() function. In this section,you’ll get a deeper look into what exactly a string is and the variousways you can create them in Python.
The String Data Type
Strings are one of the fundamental Python data types. The term datatype refers to what kind of data a value represents. Strings are usedto represent text.

Note
There are several other data types built-in to Python. For exam-ple, you’ll learn about numerical data types in Chapter 5, andBoolean types in Chapter 8.

We say that strings are a fundamental data type because they can’tbe broken down into smaller values of a different type. Not all datatypes are fundamental. You’ll learn about compound data types, alsoknown as data structures, in Chapter 9.
The string data type has a special abbreviated name in Python: str.You can see this by using the type() function, which is used to deter-mine the data type of a given value.
Type the following into IDLE’s interactive window:
>>> type("Hello, world")

<class 'str'>

The output <class 'str'> indicates that the value "Hello, world" is aninstance of the str data type. That is, "Hello, world" is a string.

66

4.1. What is a String?
Note
For now, you can think of the word “class” as a synonym for“data type,” although it actually refers to something more spe-cific. You’ll see just what a class is in Chapter 10.

type() also works for values that have been assigned to a variable:
>>> phrase = "Hello, world"

>>> type(phrase)

<class 'str'>

Strings have three properties that you’ll explore in the coming sec-tions:
1. Strings contain characters, which are individual letters or sym-bols.
2. Strings have a length, which is the number of characterscontained in the string.
3. Characters in a string appear in a sequence, meaning each char-acter has a numbered position in the string.
Let’s take a closer look at how strings are created.
String Literals
As you’ve already seen, you can create a string by surrounding sometext with quotation marks:
string1 = 'Hello, world'

string2 = "1234"

Either single quotes (string1) or double quotes (string2) can be usedto create a string, as long as both quotation marks are the same type.
Whenever you create a string by surrounding text with quotationmarks, the string is called a string literal. The name indicates thatthe string is literally written out in your code. All of the strings you

67

4.1. What is a String?
have seen thus far are string literals.

Note
Not every string is a string literal. For example, a string cap-tured as user input isn’t a string literal because it isn’t explicitlywritten out in the program’s code.
You’ll learn how toworkwith user input in section 4 of this chap-ter.

The quotes surrounding a string are called delimiters because theytell Python where a string begins and where it ends. When one typeof quotes is used as the delimiter, the other type of quote can be usedinside of the string:
string3 = "We're #1!"

string4 = 'I said, "Put it over by the llama."'

After Python reads the first delimiter, all of the characters after it areconsidered a part of the string until a second matching delimiter isread. This is why you can use a single quote in a string delimited bydouble quotes and vice versa.
If you try to use double quotes inside of a string that is delimited bydouble quotes, you will get an error:
>>> text = "She said, "What time is it?""

File "<stdin>", line 1

text = "She said, "What time is it?""

^

SyntaxError: invalid syntax

Python throws a SyntaxError because it thinks that the string ends afterthe second " and doesn’t know how to interpret the rest of the line.

68

4.1. What is a String?
Note
A common pet peeve among programmers is the use of mixedquotes as delimiters. When you work on a project, it’s a goodidea to use only single quotes or only double quotes to delimitevery string.
Keep inmind that there isn’t really a right or wrong choice! Thegoal is to be consistent, because consistency helps make yourcode easier to read and understand.

Strings can contain any valid Unicode character. For example, thestring "We're #1!" contains the pound sign (#) and "1234" contains num-bers. "×Pýŧħøŋ×" is also a valid Python string!
Determine the Length of a String
The number of characters contained in a string, including spaces, iscalled the length of the string. For example, the string "abc" has alength of 3, and the string "Don't Panic" has a length of 11.
To determine a string’s length, you use Python’s built-in len() func-tion. To see how it works, type the following into IDLE’s interactivewindow:
>>> len("abc")

3

You can also use len() to get the length of a string that’s assigned to avariable:
>>> letters = "abc"

>>> num_letters = len(letters)

>>> num_letters

3

First, the string "abc" is assigned to the variable letters. Then len()is used to get the length of letters and this value is assigned to the
num_letters variable. Finally, the value of num_letters, which is 3, is

69

4.1. What is a String?
displayed.
Multiline Strings
The PEP 8 style guide recommends that each line of Python code con-tain no more than 79 characters—including spaces.

Note
PEP 8’s 79-character line-length is recommended because,among other things, it makes it easier to read two files side-by-side. However, many Python programmers believe forcingeach line to be at most 79 characters sometimes makes codeharder to read.
In this book we will strictly follow PEP 8’s recommended line-length. Just know that you will encounter lots of code in thereal world with longer lines.

Whether you decide to follow PEP 8, or choose a larger number ofcharacters for your line-length, you will sometimes need to createstring literals with more characters than your chosen limit.
To deal with long strings, you can break the string up across multiplelines into a multiline string. For example, suppose you need to fitthe following text into a string literal:

“This planet has—or rather had—a problem, which wasthis: most of the people living on it were unhappy forpretty much of the time. Many solutions were suggestedfor this problem, but most of these were largely con-cerned with the movements of small green pieces ofpaper, which is odd because on the whole it wasn’t thesmall green pieces of paper that were unhappy.”
— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

70

https://pep8.org/#maximum-line-length

4.1. What is a String?
This paragraph contains far more than 79 characters, so any line ofcode containing the paragraph as a string literal violates PEP 8. So,what do you do?
There are a couple of ways to tackle this. Oneway is to break the stringup acrossmultiple lines and put a backslash (\) at the end of all but thelast line. To be PEP 8 compliant, the total length of the line, includingthe backslash, must be 79 characters or less.
Here’s how you could write the paragraph as a multiline string usingthe backslash method:
paragraph = "This planet has - or rather had - a problem, which was \

this: most of the people living on it were unhappy for pretty much \

of the time. Many solutions were suggested for this problem, but \

most of these were largely concerned with the movements of small \

green pieces of paper, which is odd because on the whole it wasn't \

the small green pieces of paper that were unhappy."

Notice that you don’t have to close each line with a quotation mark.Normally, Python would get to the end of the first line and complainthat you didn’t close the string with a matching double quote. With abackslash at the end, however, you can keep writing the same stringon the next line.
When you print() a multiline string that is broken up by backslashes,the output displayed on a single line:
>>> long_string = "This multiline string is \

displayed on one line"

>>> print(long_string)

This multiline string is displayed on one line

Multiline strings can also be created using triple quotes as delimiters(""" or '''). Here is how you might write a long paragraph using thisapproach:

71

4.1. What is a String?
paragraph = """This planet has - or rather had - a problem, which was

this: most of the people living on it were unhappy for pretty much

of the time. Many solutions were suggested for this problem, but

most of these were largely concerned with the movements of small

green pieces of paper, which is odd because on the whole it wasn't

the small green pieces of paper that were unhappy."""

Triple-quoted strings preserve whitespace. This means that running
print(paragraph) displays the string on multiple lines just like it is inthe string literal, including newlines. This may or may not be whatyou want, so you’ll need to think about the desired output before youchoose how to write a multiline string.
To see how whitespace is preserved in a triple-quoted string, type thefollowing into IDLE’s interactive window:
>>> print("""An example of a

... string that spans across multiple lines

... that also preserves whitespace.""")

An example of a

string that spans across multiple lines

that also preserves whitespace.

Notice how the second and third lines in the output are indented ex-actly the same way they are in the string literal.
Note
Triple-quoted strings have a special purpose in Python. Theyare used to document code. You’ll often find them at the topof a .py with a description of the code’s purpose. They are alsoused to document custom functions.
When used to document code, triple-quoted strings are calleddocstrings. You’ll learn more about docstrings in Chapter 6.

72

4.2. Concatenation, Indexing, and Slicing
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Print a string that uses double quotation marks inside the string.
2. Print a string that uses an apostrophe inside the string.
3. Print a string that spansmultiple lines, with whitespace preserved.
4. Print a string that is coded on multiple lines but displays on a sin-gle line.
Leave feedback on this section »

4.2 Concatenation, Indexing, andSlicing
Now that you know what a string is and how to declare string literalsin your code, let’s explore some of the things you can do with strings.
In this section, you’ll learn about three basic string operations:
1. Concatenation, which joins two strings together
2. Indexing, which gets a single character from a string
3. Slicing, which gets several characters from a string at once
Let’s dive in!
String Concatenation
Two strings can be combined, or concatenated, using the + operator:
>>> string1 = "abra"

>>> string2 = "cadabra"

>>> magic_string = string1 + string2

>>> magic_string

73

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoibFQ4VjBMZTB7Y0VMbVZ9Vz81Oz5vJWVlNVdBe2kyUVMkaU8jciVodyIsInQiOiJjaGFwdGVycy8wNC8wMi5tZCAoMzlhZTYzN2I4NmY0ZWQ2ZCkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi8zOWFlNjM3Yjg2ZjRlZDZkNmI0OTM5Y2E4MzBiMTUxYmE4ZmE3NjE2L2NoYXB0ZXJzLzA0LzAyLm1kIn0=

4.2. Concatenation, Indexing, and Slicing
'abracadabra'

In this example, string concatenation occurs on the third line. string1and string2 are concatenated using + and the result is assigned to thevariable magic_string. Notice that the two strings are joined withoutany whitespace between them.
You can use string concatenation to join two related strings, such asjoining a first and last name into a full name:
>>> first_name = "Arthur"

>>> last_name = "Dent"

>>> full_name = first_name + " " + last_name

>>> full_name

'Arthur Dent'

Here string concatenation occurs twice on the same line. first_nameis concatenated with " ", resulting in the string "Arthur ". Then thisresult is concatenated with last_name to produce the full name "Arthur

Dent".
String Indexing
Each character in a string has a numbered position called an index.You can access the character at the Nth position by putting the num-ber N in between two square brackets ([and]) immediately after thestring:
>>> flavor = "apple pie"

>>> flavor[1]

'p'

flavor[1] returns the character at position 1 in "apple pie", which is p.Wait, isn’t a the first character of "apple pie"?
In Python—and most other programming languages—countingalways starts at zero. To get the character at the beginning of a string,you need to access the character at position 0:

74

4.2. Concatenation, Indexing, and Slicing
>>> flavor[0]

'a'

Note
Forgetting that counting starts with zero and trying to accessthe first character in a string with the index 1 results in an oп-by-one error.
Off-by-one errors are a common source of frustration for bothbeginning and experienced programmers alike!

The following figure shows the index for each character of the string
"apple pie":

| a | p | p | l | e | | p | i | e |

0 1 2 3 4 5 6 7 8

If you try to access an index beyond the end of a string, Python raisesan IndexError:
>>> flavor[9]

Traceback (most recent call last):

File "<pyshell#4>", line 1, in <module>

flavor[9]

IndexError: string index out of range

The largest index in a string is always one less than the string’s length.Since "apple pie" has a length of nine, the largest index allowed is 8.
Strings also support negative indices:
>>> flavor[-1]

'e'

The last character in a string has index -1, which for "apple pie" is theletter e. The second-to-last character i has index -2, and so on.

75

4.2. Concatenation, Indexing, and Slicing
The following figure shows the negative index for each character inthe string "apple pie":
| a | p | p | l | e | | p | i | e |

-9 -8 -7 -6 -5 -4 -3 -2 -1

Just like positive indices, Python raises an IndexError if you try to ac-cess a negative index less than the index of the first character in thestring:
>>> flavor[-10]

Traceback (most recent call last):

File "<pyshell#5>", line 1, in <module>

flavor[-10]

IndexError: string index out of range

Negative indices may not seem useful at first, but sometimes they area better choice than a positive index.
For example, suppose a string input by a user is assigned to the vari-able user_input. If you need to get the last character of the string, howdo you know what index to use?
One way to get the last character of a string is to calculate the finalindex using len():
final_index = len(user_input) - 1

last_character = user_input[final_index]

Getting the final character with the index -1 takes less typing anddoesn’t require an intermediate step to calculate the final index:
last_character = user_input[-1]

76

4.2. Concatenation, Indexing, and Slicing
String Slicing
Suppose you need the string containing just the first three letters ofthe string "apple pie". You could access each character by index andconcatenate them, like this:
>>> first_three_letters = flavor[0] + flavor[1] + flavor[2]

>>> first_three_letters

'app'

If you need more than just the first few letters of a string, getting eachcharacter individually and concatenating them together is clumsyand long-winded. Fortunately, Python provides a way to do this withmuch less typing.
You can extract a portion of a string, called a substring, by inserting acolon between two index numbers inside of square brackets, like this:
>>> flavor = "apple pie"

>>> flavor[0:3]

'app'

flavor[0:3] returns the first three characters of the string assigned to
flavor, startingwith the characterwith index 0 and going up to, but notincluding, the character with index 3. The [0:3] part of flavor[0:3] iscalled a slice. In this case, it returns a slice of "apple pie". Yum!
String slices can be confusing because the substring returned bythe slice includes the character whose index is the first number, butdoesn’t include the character whose index is the second number.
To remember how slicing works, you can think of a string as a se-quence of square slots. The left and right boundary of each slot isnumbered from zero up to the length of the string, and each slot isfilled with a character in the string.
Here’s what this looks like for the string "apple pie":

| a | p | p | l | e | | p | i | e |

77

4.2. Concatenation, Indexing, and Slicing

0 1 2 3 4 5 6 7 8 9

The slice [x:y] returns the substring between the boundaries x and y.So, for "apple pie", the slice [0:3] returns the string "app", and the slice
[3:9] returns the string "le pie".
If you omit the first index in a slice, Python assumes you want to startat index 0:
>>> flavor[:5]

'apple'

The slice [:5] is equivalent to the slice [0:5], so flavor[:5] returns thefirst five characters in the string "apple pie".
Similarly, if you omit the second index in the slice, Python assumesyou want to return the substring that begins with the character whoseindex is the first number in the slice and ends with the last characterin the string:
>>> flavor[5:]

' pie'

For "apple pie", the slice [5:] is equivalent to the slice [5:9]. Sincethe character with index 5 is a space, flavor[5:9] returns the substringthat starts with the space and ends with the last letter, which is " pie".
If you omit both the first and second numbers in a slice, you get astring that starts with the character with index 0 and endswith the lastcharacter. In other words, omitting both numbers in a slice returnsthe entire string:
>>> flavor[:]

'apple pie'

It’s important to note that, unlike string indexing, Python won’t raisean IndexErrorwhen you try to slice between boundaries before or after
78

4.2. Concatenation, Indexing, and Slicing
the beginning and ending boundaries of a string:
>>> flavor[:14]

'apple pie'

>>> flavor[13:15]

''

In this example, the first line gets the slice from the beginning of thestring up to but not including the fourteenth character. The string as-signed to flavor has length nine, so you might expect Python to throwan error. Instead, any non-existent indices are ignored and the entirestring "apple pie" is returned.
The second shows what happens when you try to get a slice wherethe entire range is out of bounds. flavor[13:15] attempts to get thethirteenth and fourteenth characters, which don’t exist. Instead ofraising an error, the empty string "" is returned.
You can use negative numbers in slices. The rules for slices with neg-ative numbers are exactly the same as slices with positive numbers.It helps to visualize the string as slots with the boundaries labeled bynegative numbers:
| a | p | p | l | e | | p | i | e |

-9 -8 -7 -6 -5 -4 -3 -2 -1

Just like before, the slice [x:y] returns the substring between theboundaries x and y. For instance, the slice [-9:-6] returns the firstthree letters of the string "apple pie":
>>> flavor[-9:-6]

'app'

Notice, however, that the right-most boundary does not have a nega-tive index. The logical choice for that boundary would seem to be thenumber 0, but that doesn’t work:

79

4.2. Concatenation, Indexing, and Slicing
>>> flavor[-9:0]

''

Instead of returning the entire string, [-9:0] returns the emptystring "". This is because the second number in a slice must corre-spond to a boundary that comes after the boundary correspondingto the first number, but both -9 and 0 correspond to the left-mostboundary in the figure.
If you need to include the final character of a string in your slice, youcan omit the second number:
>>> flavor[-9:]

'apple pie'

Strings Are Immutable
To wrap this section up, let’s discuss an important property of stringobjects. Strings are immutable, which means that you can’t changethem once you’ve created them. For instance, see what happens whenyou try to assign a new letter to one particular character of a string:
>>> word = "goal"

>>> word[0] = "f"

Traceback (most recent call last):

File "<pyshell#16>", line 1, in <module>

word[0] = "f"

TypeError: 'str' object does not support item assignment

Python throws a TypeError and tells you that str objects don’t supportitem assignment.
Note
The term str is Python’s internal name for the string data type.

If you want to alter a string, you must create an entirely new string.To change the string "goal" to the string "foal", you can use a string

80

4.3. Manipulate Strings With Methods
slice to concatenate the letter "f"with everything but the first letter ofthe word "goal":
>>> word = "goal"

>>> word = "f" + word[1:]

>>> word

'foal'

First assign the string "goal" to the variable word. Then concatenatethe slice word[1:], which is the string "oal", with the letter "f" to getthe string "foal". If you’re getting a different result here, make sureyou’re including the : colon character as part of the string slice.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Create a string and print its length using the len() function.
2. Create two strings, concatenate them, and print the resultingstring.
3. Create two strings and use concatenation to add a space in-between them. Then print the result.
4. Print the string "zing" by using slice notation on the string

"bazinga" to specify the correct range of characters.
Leave feedback on this section »

4.3 Manipulate Strings With Methods
Strings come bundled with special functions called string methodsthat can be used to work with and manipulate strings. There are nu-merous string methods available, but we’ll focus on some of the mostcommonly used ones.
In this section, you will learn how to:

81

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiUzFld1FQZT9uKiVmajB4UElNc3BJKl55QWV9OFVeK1dzeWtAO1JifCIsInQiOiJjaGFwdGVycy8wNC8wMy5tZCAoYzdlNWNkMDAyNzRiMmU5MSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi9jN2U1Y2QwMDI3NGIyZTkxNTk3YWYyZmM3MWQ2NmJjNTVjMDk2Y2ZmL2NoYXB0ZXJzLzA0LzAzLm1kIn0=

