
4.3. Manipulate Strings With Methods
• Convert a string to upper or lower case
• Remove whitespace from string
• Determine if a string begins and ends with certain characters

Let’s go!
Converting String Case
To convert a string to all lower case letters, youuse the string’s .lower()method. This is done by tacking .lower() on to the end of the stringitself:
>>> "Jean-luc Picard".lower()

'jean-luc picard'

The dot (.) tells Python that what follows is the name of a method—the lower() method in this case.
Note
We will refer to the names of string methods with a dot at thebeginning of them. So, for example, the .lower()method is writ-ten with a dot, instead of lower().
The reason we do this is to make it easy to spot functions thatare stringmethods, as opposed to built-in functions like print()and type().

String methods don’t just work on string literals. You can also use the
.lower() method on a string assigned to a variable:
>>> name = "Jean-luc Picard"

>>> name.lower()

'jean-luc picard'

The opposite of the .lower()method is the .upper()method, which con-verts every character in a string to upper case:

82



4.3. Manipulate Strings With Methods
>>> loud_voice = "Can you hear me yet?"

>>> loud_voice.upper()

'CAN YOU HEAR ME YET?'

Compare the .upper() and .lower() string methods to the general-purpose len() function you saw in the last section. Aside from thedifferent results of these functions, the important distinction here ishow they are used.
The len() function is a stand-alone function. If you want to determinethe length of the loud_voice string, you call the len() function directly,like this:
>>> len(loud_voice)

20

On the other hand, .upper() and .lower()must be used in conjunctionwith a string. They do not exist independently.
RemovingWhitespace From a String
Whitespace is any character that is printed as blank space. This in-cludes things like spaces and line feeds, which are special charactersthat move output to a new line.
Sometimes you need to remove whitespace from the beginning or endof a string. This is especially useful when working with strings thatcome from user input, where extra whitespace characters may havebeen introduced by accident.
There are three stringmethods that you can use to remove whitespacefrom a string:
1. .rstrip()

2. .lstrip()

3. .strip()

.rstrip() removes whitespace from the right side of a string:
83



4.3. Manipulate Strings With Methods
>>> name = "Jean-luc Picard "

>>> name

'Jean-luc Picard '

>>> name.rstrip()

'Jean-luc Picard'

In this example, the string "Jean-luc Picard " has five trailingspaces. Python doesn’t remove any trailing spaces in a string automat-ically when the string is assigned to a variable. The .rstrip() methodremoves trailing spaces from the right-hand side of the string and re-turns a new string "Jean-luc Picard", which no longer has the spacesat the end.
The .lstrip()method works just like .rstrip(), except that it removeswhitespace from the left-hand side of the string:
>>> name = " Jean-luc Picard"

>>> name

' Jean-luc Picard'

>>> name.lstrip()

'Jean-luc Picard'

To remove whitespace from both the left and the right sides of thestring at the same time, use the .strip() method:
>>> name = " Jean-luc Picard "

>>> name

' Jean-luc Picard '

>>> name.strip()

'Jean-luc Picard'

Note
None of the .rstrip(), .lstrip(), and .strip() methods removewhitespace from the middle of the string. In each of the pre-vious examples the space between “Jean-luc” and “Picard” isalways preserved.

84



4.3. Manipulate Strings With Methods
Determine if a String Starts or EndsWith aParticular String
When you work with text, sometimes you need to determine if a givenstring starts with or ends with certain characters. You can use twostring methods to solve this problem: .startswith() and .endswith().
Let’s look at an example. Consider the string "Enterprise". Here’s howyou use .startswith() to determine if the string starts with the letters
e and n:
>>> starship = "Enterprise"

>>> starship.startswith("en")

False

Youmust tell .startswith()what characters to search for by providinga string containing those characters. So, to determine if "Enterprise"starts with the letters e and n, you call .startswith("en"). This returns
False. Why do you think that is?
If you guessed that .startswith("en") returns False because "Enter-

prise" starts with a capital E, you’re absolutely right! The .startswith()method is case-sensitive. To get .startswith() to return True, youneed to provide it with the string "En":
>>> starship.startswith("En")

True

The .endswith() method is used to determine if a string ends with cer-tain characters:
>>> starship.endswith("rise")

True

Just like .startswith(), the .endswith() method is case-sensitive:
>>> starship.endswith("risE")

False

85



4.3. Manipulate Strings With Methods
Note
The True and False values are not strings. They are a special kindof data type called aBoolean value. Youwill learnmore aboutBoolean values in Chapter 8.

String Methods and Immutability
Recall from the previous section that strings are immutable—theycan’t be changed once they have been created. Most string methodsthat alter a string, like .upper() and .lower(), actually return copies ofthe original string with the appropriate modifications.
If you aren’t careful, this can introduce subtle bugs into your program.Try this out in IDLE’s interactive window:
>>> name = "Picard"

>>> name.upper()

'PICARD'

>>> name

'Picard'

When you call name.upper(), nothing about name actually changes. Ifyou need to keep the result, you need to assign it to a variable:
>>> name = "Picard"

>>> name = name.upper()

>>> name

'PICARD'

name.upper() returns a new string "PICARD", which is re-assigned to the
name variable. This overrides the original string "Picard" assigned to
"name".
Use IDLE to Discover Additional String Methods
Strings have lots of methods associated to them. The methods intro-duced in this section barely scratch the surface. IDLE can help you

86



4.3. Manipulate Strings With Methods
find new string methods. To see how, first assign a string literal to avariable in the interactive window:
>>> starship = "Enterprise"

Next, type starship followed by a period, but do not hit Enter. Youshould see the following in the interactive window:
>>> starship.

Now wait for a couple of seconds. IDLE displays a list of every stringmethod that you can scroll through with the arrow keys.
A related shortcut in IDLE is the ability to fill in text automaticallywithout having to type in long names by hitting Tab. For instance, ifyou only type in starship.u and then hit the Tab key, IDLE automati-cally fills in starship.upper because there is only onemethod belongingto starship that begins with a u.
This even works with variable names. Try typing in just the first fewletters of starship and, assuming you don’t have any other names al-ready defined that share those first letters, IDLE completes the name
starship for you when you hit the Tab key.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Write a script that converts the following strings to lowercase: "An-

imals", "Badger", "Honey Bee", "Honeybadger". Print each lowercasestring on a separate line.
2. Repeat Exercise 1, but convert each string to uppercase instead oflowercase.
3. Write a script that removes whitespace from the following strings:

string1 = " Filet Mignon"

string2 = "Brisket "

87

https://realpython.com/python-basics/resources/


4.4. Interact With User Input
string3 = " Cheeseburger "

Print out the strings with the whitespace removed.
4. Write a script that prints out the result of .startswith("be") on eachof the following strings:

string1 = "Becomes"

string2 = "becomes"

string3 = "BEAR"

string4 = " bEautiful"

5. Using the same four strings from Exercise 4, write a script thatuses string methods to alter each string so that .startswith("be")returns True for all of them.
Leave feedback on this section »

4.4 Interact With User Input
Now that you’ve seen how to work with string methods, let’s makethings interactive. In this section, youwill learn how to get some inputfrom a user with the input() function. You’ll write a program that asksa user to input some text and then display that text back to them inuppercase.
Enter the following into IDLE’s interactive window:
>>> input()

When you press Enter , it looks like nothing happens. The cursormoves to a new line, but a new >>> doesn’t appear. Python is waitingfor you to enter something!
Go ahead and type some text and press Enter :
>>> input()

Hello there!

'Hello there!'

>>>

88

https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiNTEpc2RFMUEmfiREckk_N0NTeXRCRkZaVCE5UWtlazFZQmZqTURBQSIsInQiOiJjaGFwdGVycy8wNC8wNC5tZCAoMmU4ZGRjZGZhMWJhYTQyZikiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi8yZThkZGNkZmExYmFhNDJmZTRiOWFiMDYxM2QwOTBmNzFmYTM0NTQyL2NoYXB0ZXJzLzA0LzA0Lm1kIn0=


4.4. Interact With User Input
The text you entered is repeated on a new line with single quotes.That’s because input() returns any text entered by the user as a string.
To make input() a bit more user friendly, you can give it a prompt todisplay to the user. The prompt is just a string that you put in betweenthe parentheses of input(). It can be anything you want: a word, asymbol, a phrase—anything that is a valid Python string.
The input() function displays the prompt andwaits for the user to typesomething on their keyboard. When the user hits Enter, input() re-turns their input as a string that can be assigned to a variable andused to do something in your program.
To see how input() works, save and run the following script:
prompt = "Hey, what's up? "

user_input = input(prompt)

print("You said:", user_input)

When you run this script, you’ll see Hey, what's up? displayed in theinteractive window with a blinking cursor.
The single space at the end of the string "Hey, what's up? " makessure that when the user starts to type, the text is separated from theprompt with a space. When you type a response and press Enter , yourresponse is assigned to the user_input variable.
Here’s a sample run of the program:
Hey, what's up? Mind your own business.

You said: Mind your own business.

Once you have input from a user, you can do something with it. Forexample, the following script takes user input and converts it to up-percase with .upper() and prints the result:

89



4.5. Challenge: Pick Apart Your User’s Input
response = input("What should I shout? ")

shouted_response = response.upper()

print("Well, if you insist...", shouted_response)

Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Write a script that takes input from the user and displays that in-put back.
2. Write a script that takes input from the user and displays the inputin lowercase.
3. Write a script that takes input from the user and displays the num-ber of characters inputted.
Leave feedback on this section »

4.5 Challenge: Pick Apart Your User’sInput
Write a script named first_letter.py that first prompts the user forinput by using the string "Tell me your password:" The script shouldthen determine the first letter of the user’s input, convert that letterto upper-case, and display it back.
For example, if the user input is "no" then the program should respondlike this:
The first letter you entered was: N

For now, it’s okay if your program crashes when the user enters noth-ing as input—that is, they just hit Enter instead of typing something in.You’ll learn about a couple of ways you can deal with this situation inan upcoming chapter.

90

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiKTR4LTUqYDw5VnxDQlR5NiZMeXcoVkpRbWdCfXQkMFpQeUJ2MVpyYiIsInQiOiJjaGFwdGVycy8wNC8wNS5tZCAoMGFiYTlhYzUzMjUxMTIyMCkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi8wYWJhOWFjNTMyNTExMjIwOWFjOTRiNTRlZTJlOTNhODg0YWNlOWEwL2NoYXB0ZXJzLzA0LzA1Lm1kIn0=


4.6. Working With Strings and Numbers
You can пnd the solutions to this code challenge andmany other bonusresources online at realpython.com/python-basics/resources.
Leave feedback on this section »

4.6 WorkingWith Strings and Numbers
Whenyou get user input using the input() function, the result is alwaysa string. There aremany other times when input is given to a programas a string. Sometimes those strings contain numbers that need to befed into calculations.
In this section you will learn how to deal with strings of numbers. Youwill see howarithmetic operationswork on strings, andhow they oftenlead to surprising results. You will also learn how to convert betweenstrings and number types.
Strings and Arithmetic Operators
You’ve seen that string objects can hold many types of characters, in-cluding numbers. However, don’t confuse numerals in a string withactual numbers. For instance, try this bit of code out in IDLE’s inter-active window:
>>> num = "2"

>>> num + num

'22'

The + operator concatenates two string together. So, the result of "2"
+ "2" is "22", not "4".
Strings can be “multiplied” by a number as long as that number isan integer, or whole number. Type the following into the interactivewindow:
>>> num = "12"

>>> num * 3

91

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiWjUzY0pTdC1Xczsza2EwTiVjWShsR209P1ZwWXgjZylXXmlYYyFVeSIsInQiOiJjaGFwdGVycy8wNC8wNi5tZCAoZWZlODkwYWZhZDI2YWZjOSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi9lZmU4OTBhZmFkMjZhZmM5OThiNDg3Y2E0ODI0NWRjZWRhYjlmYjM3L2NoYXB0ZXJzLzA0LzA2Lm1kIn0=


4.6. Working With Strings and Numbers
'121212'

num * 3 concatenates the string "12"with itself three times and returnsthe string "121212". To compare this operation to arithmetic with num-bers, notice that "12" * 3 = "12" + "12" + "12". In other words, mul-tiplying a string by an integer n concatenates that string with itself ntimes.
The number on the right-hand side of the expression num * 3 can bemoved to the left, and the result is unchanged:
>>> 3 * num

'121212'

What do you think happens if you use the * operator between twostrings? Type "12" * "3" in the interactive window and press Enter:
>>> "12" * "3"

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: can't multiply sequence by non-int of type 'str'

Python raises a TypeError and tells you that you can’t multiply a se-quence by a non-integer. When the * operator is used with a stringon either the left or the right side, it always expects an integer on theother side.
Note
A sequence is any Python object that supports accessing ele-ments by index. Strings are sequences. You will learn aboutother sequence types in Chapter 9.

What do you think happens when you try to add a string and a num-ber?
>>> "3" + 3

Traceback (most recent call last):

92



4.6. Working With Strings and Numbers
File "<stdin>", line 1, in <module>

TypeError: can only concatenate str (not "int") to str

Again, Python throws a TypeError because the + operator expects boththings on either side of it to be of the same type. If any one of theobjects on either side of + is a string, Python tries to perform stringconcatenation. Addition will only be performed if both objects arenumbers. So, to add "3" + 3 and get 6, you must first convert thestring "3" to a number.
Converting Strings to Numbers
The TypeError errors you saw in the previous section highlight a com-mon problem encountered when working with user input: type mis-matches when trying to use the input in an operation that requires anumber and not a string.
Let’s look at an example. Save and run the following script.
num = input("Enter a number to be doubled: ")

doubled_num = num * 2

print(doubled_num)

When you enter a number, such as 2, you expect the output to be 4, butin this case, you get 22. Remember, input() always returns a string, soif you input 2, then num is assigned the string "2", not the integer 2.Therefore, the expression num * 2 returns the string "2" concatenatedwith itself, which is "22".
To perform arithmetic on numbers that are contained in a string, youmust first convert them from a string type to a number type. Thereare two ways to do this: int() and float().
int() stands for integer and converts objects into whole numbers,while float() stands for сoating-point number and converts ob-jects into numbers with decimal points. Here’s what using them lookslike in the interactive window:

93



4.6. Working With Strings and Numbers
>>> int("12")

12

>>> float("12")

12.0

Notice how float() adds a decimal point to the number. Floating-point numbers always have at least one decimal place of precision. Forthis reason, you can’t change a string that looks like a floating-pointnumber into an integer because you would lose everything after thedecimal point:
>>> int("12.0")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '12.0'

Even though the extra 0 after the decimal place doesn’t add any valueto the number, Python won’t change 12.0 into 12 because it would re-sult in the loss of precision.
Let’s revisit the script from the beginning of this section and see howto fix it. Here’s the script again:
num = input("Enter a number to be doubled: ")

doubled_num = num * 2

print(doubled_num)

The issue lies in the line doubled_num = num * 2 because num referencesa string and 2 is an integer. You can fix the problem by wrapping numwith either int() or float(). Since the prompts asks the user to input anumber, and not specifically an integer, let’s convert num to a floating-point number:
num = input("Enter a number to be doubled: ")

doubled_num = float(num) * 2

print(doubled_num)

94



4.6. Working With Strings and Numbers
Nowwhen you run this script and input 2, you get 4.0 as expected. Tryit out!
Converting Numbers to Strings
Sometimes you need to convert a number to a string. You might dothis, for example, if you need to build a string from some pre-existingvariables that are assigned to numeric values.
As you’ve already seen, the following produces a TypeError:
>>> num_pancakes = 10

>>> "I am going to eat " + num_pancakes + " pancakes."

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: can only concatenate str (not "int") to str

Since num_pancakes is a number, Python can’t concatenate it with thestring "I'm going to eat". To build the string, you need to convert
num_pancakes to a string using str():
>>> num_pancakes = 10

>>> "I am going to eat " + str(num_pancakes) + " pancakes."

'I am going to eat 10 pancakes.'

You can also call str() on a number literal:
>>> "I am going to eat " + str(10) + " pancakes."

'I am going to eat 10 pancakes.'

str() can even handle arithmetic expressions:
>>> total_pancakes = 10

>>> pancakes_eaten = 5

>>> "Only " + str(total_pancakes - pancakes_eaten) + " pancakes left."

'Only 5 pancakes left.'

You’re not limited to numbers when using str(). You can pass it allsorts of objects to get their string representations:
95



4.6. Working With Strings and Numbers
>>> str(print)

'<built-in function print>'

>>> str(int)

"<class 'int'>"

>>> str(float)

"<class 'float'>"

These examplesmay not seem very useful, but they illustrate how flex-ible str() is.
In the next section, you’ll learn how to format strings neatly to displayvalues in a nice, readablemanner. Before youmove on, though, checkyour understanding with the following review exercises.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Create a string containing an integer, then convert that string intoan actual integer object using int(). Test that your new object isa number by multiplying it by another number and displaying theresult.
2. Repeat the previous exercise, but use a floating-point number and

float().
3. Create a string object and an integer object, then display them side-by-side with a single print statement by using the str() function.
4. Write a script that gets two numbers from the user using the

input() function twice, multiplies the numbers together, anddisplays the result. If the user enters 2 and 4, your program shouldprint the following text:
The product of 2 and 4 is 8.0.

Leave feedback on this section »

96

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiT09LOGtMYSlndXtNQyNVTiNaMzFzelkyIW0zdCRWJEgyM35HVXEtPSIsInQiOiJjaGFwdGVycy8wNC8wNy5tZCAoNGE4ZWM2NjkzN2M2ODVjMykiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi80YThlYzY2OTM3YzY4NWMzOTZhYWRiNTEyMDFjYTNiNTI4OWE4NTA2L2NoYXB0ZXJzLzA0LzA3Lm1kIn0=


4.7. Streamline Your Print Statements
4.7 Streamline Your Print Statements
Suppose you have a string name = "Zaphod" and two integers heads = 2and arms = 3. You want to display them in the following line: Zaphod

has 2 heads and 3 arms. This is called string interpolation, which isjust a fancy way of saying that you want to insert some variables intospecific locations in a string.
You’ve already seen two ways of doing this. The first involves usingcommas to insert spaces between each part of the string inside of a
print() function:
print(name, "has", str(heads), "heads and", str(arms), "arms")

Another way to do this is by concatenating the strings with the + oper-ator:
print(name + " has " + str(heads) + " heads and " + str(arms) + " arms")

Both techniques produce code that can be hard to read. Trying to keeptrack of what goes inside or outside of the quotes can be tough. For-tunately, there’s a third way of combining strings: formatted stringliterals, more commonly known as f-strings.
The easiest way to understand f-strings is to see them in action. Here’swhat the above string looks like when written as an f-string:
>>> f"{name} has {heads} heads and {arms} arms"

'Zaphod has 2 heads and 3 arms'

There are two important things to notice about the above examples:
1. The string literal starts with the letter f before the opening quota-tion mark
2. Variable names surrounded by curly braces ({ and }) are replacedwith their corresponding values without using str()

You can also insert Python expressions in between the curly braces.The expressions are replaced with their result in the string:
97

https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals


4.7. Streamline Your Print Statements
>>> n = 3

>>> m = 4

>>> f"{n} times {m} is {n*m}"

'3 times 4 is 12'

It is a good idea to keep any expressions used in an f-string as sim-ple as possible. Packing in a bunch of complicated expressions into astring literal can result in code that is difficult to read and difficult tomaintain.
f-strings are only available in Python version 3.6 and above. In ear-lier versions of Python, the .format() method can be used to get thesame results. Returning to the Zaphod example, you can use .format()method to format the string like this:
>>> "{} has {} heads and {} arms".format(name, heads, arms)

'Zaphod has 2 heads and 3 arms'

f-strings are shorter, and sometimes more readable, than using .for-

mat(). You will see f-strings used throughout this book.
For an in-depth guide to f-strings and comparisons to other string for-matting techniques, check out the Python 3’s f-Strings: An ImprovedString Formatting Syntax (Guide) on realpython.com

Note
There is also another way to print formatted strings: using the
% operator. You might see this in code that you find elsewhere,and you can read about how it works here if you’re curious.
Keep in mind that this style has been phased out entirely inPython 3. Just be aware that it exists and you may see it inlegacy Python code bases.

98

https://realpython.com/python-f-strings/
https://realpython.com/python-f-strings/
https://realpython.com
https://docs.python.org/3/library/stdtypes.html#old-string-formatting


4.8. Find a String in a String
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. Create a float object named weight with the value 0.2, and createa string object named animal with the value "newt". Then use theseobjects to print the following string using only string concatena-tion:

0.2 kg is the weight of the newt.

2. Display the same string by using the .format() method and empty
{} place-holders.

3. Display the same string using an f-string.
Leave feedback on this section »

4.8 Find a String in a String
One of the most useful string methods is .find(). As its name implies,you can use this method to find the location of one string in anotherstring—commonly referred to as a substring.
To use .find(), tack it to the end of a variable or a string literal andpass the string you want to find in between the parentheses:
>>> phrase = "the surprise is in here somewhere"

>>> phrase.find("surprise")

4

The value that .find() returns is the index of the first occurrence of thestring you pass to it. In this case, "surprise" starts at the fifth characterof the string "the surprise is in here somewhere" which has index 4because counting starts at 0.
If .find() doesn’t find the desired substring, it will return -1 instead:

99

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoicDw4ZCM4UjZJNWBHUWl8cDZTPnpgVEArJks1VVFheDFVd29ZP0hFKiIsInQiOiJjaGFwdGVycy8wNC8wOC5tZCAoMWMwNjg0MGFkOGY4MjE0OCkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi8xYzA2ODQwYWQ4ZjgyMTQ4YzA5YzJjY2U1MDYwZDg0YmQxOTJhMmM1L2NoYXB0ZXJzLzA0LzA4Lm1kIn0=


4.8. Find a String in a String
>>> phrase = "the surprise is in here somewhere"

>>> phrase.find("eyjafjallajökull")

-1

You can call string methods on a string literal directly, so in this case,you don’t need to create a new string:
>>> "the surprise is in here somewhere".find("surprise")

4

Keep in mind that this matching is done exactly, character by charac-ter, and is case-sensitive. For example, if you try to find "SURPRISE",the .find() method returns -1:
>>> "the surprise is in here somewhere".find("SURPRISE")

-1

If a substring appears more than once in a string, .find() only returnsthe index of the first appearance, starting from the beginning of thestring:
>>> "I put a string in your string".find("string")

8

There are two instances of the "string" in "I put a string in your

string". The first starts at index 8, and the second at index 23. .find()returns 8, which is the index of the first instance of "string".
The .find() method only accepts a string as its input. If you want tofind an integer in a string, you need to pass the integer to .find() as astring. If you do pass something other than a string to .find(), Pythonraises a TypeError:
>>> "My number is 555-555-5555".find(5)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: must be str, not int

100



4.8. Find a String in a String
>>> "My number is 555-555-5555".find("5")

13

Sometimes you need to find all occurrences of a particular substringand replace themwith a different string. Since .find() only returns theindex of the first occurrence of a substring, you can’t easily use it toperform this operation. Fortunately, string objects have a .replace()method that replaces each instance of a substring with another string.
Just like .find(), you tack .replace() on to the end of a variable orstring literal. In this case, though, you need to put two strings insideof the parentheses in .replace() and separate themwith a comma. Thefirst string is the substring to find, and the second string is the stringto replace each occurrence of the substring with.
For example, the following code shows how to replace each occur-rence of "the truth" in the string "I'm telling you the truth; nothing

but the truth" with the string "lies":
>>> my_story = "I'm telling you the truth; nothing but the truth!"

>>> my_story.replace("the truth", "lies")

"I'm telling you lies; nothing but lies!"

Since strings are immutable objects, .replace() doesn’t alter my_story.If you immediately type my_story into the interactive window after run-ning the above example, you’ll see the original string, unaltered:
>>> my_story

"I'm telling you the truth; nothing but the truth!"

To change the value of my_story, you need to reassign to it the newvalue returned by .replace():
>>> my_story = my_story.replace("the truth", "lies")

>>> my_story

"I'm telling you lies; nothing but lies!"

.replace() can only replace one substring at a time, so if you want toreplace multiple substrings in a string you need to use .replace()mul-
101



4.9. Challenge: Turn Your User Into a L33t H4x0r
tiple times:
>>> text = "some of the stuff"

>>> new_text = text.replace("some of", "all")

>>> new_text = new_text.replace("stuff", "things")

>>> new_text

'all the things'

You’ll have some fun with .replace() in the challenge in the next sec-tion.
Review Exercises
You can пnd the solutions to these exercises and many other bonusresources online at realpython.com/python-basics/resources.
1. In one line of code, display the result of trying to .find() the sub-string "a" in the string "AAA". The result should be -1.
2. Replace every occurrence of the character "s"with "x" in the string

"Somebody said something to Samantha.".
3. Write and test a script that accepts user input using the input()function and displays the result of trying to .find() a particularletter in that input.
Leave feedback on this section »

4.9 Challenge: Turn Your User Into aL33t H4x0r
Write a script called translate.py that asks the user for some inputwith the following prompt: Enter some text:. Then use the .replace()method to convert the text entered by the user into “leetspeak” bymak-ing the following changes to lower-case letters:
• The letter a becomes 4

• The letter b becomes 8

102

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiKG1WNyZ3OSNaOEkjIUI0TWpSb1BGYU1gbHdNQkJKaVV4bHtGZ1lZKyIsInQiOiJjaGFwdGVycy8wNC8wOS5tZCAoZjk0MzI4ZGY5MWIzN2I3MikiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi9mOTQzMjhkZjkxYjM3YjcyMWE3MGVlMWVmNDc4MWVjMThhNjk5MWVmL2NoYXB0ZXJzLzA0LzA5Lm1kIn0=
http://en.wikipedia.org/wiki/Leet


4.10. Summary and Additional Resources
• The letter e becomes 3

• The letter l becomes 1

• The letter o becomes 0

• The letter s becomes 5

• The letter t becomes 7

Your program should then display the resulting string as output. Be-low is a sample run of the program:
Enter some text: I like to eat eggs and spam.

I 1ik3 70 347 3gg5 4nd 5p4m.

You can пnd the solutions to this code challenge andmany other bonusresources online at realpython.com/python-basics/resources.
Leave feedback on this section »

4.10 Summary and AdditionalResources
In this chapter, you learned the ins and outs of Python string objects.You learned how to access different characters in a string using sub-scripts and slices, as well as how to determine the length of a stringwith len().
Strings come with numerous methods. The .upper() and .lower()methods convert all characters of a string to upper or lower case,respectively. The .rstrip(), .lstrip(), and strip() methods removewhitespace from strings, and the .startswith() and .endswith()methods will tell you if a string starts or ends with a given substring.
You also saw how to capture input from a user as a string using the in-

put() function, and how to convert that input to a number using int()and float(). To convert numbers, and other objects, to strings, youuse str().

103

https://realpython.com/python-basics/resources/
https://feedback.realpython.com/rp-book1-early-access/?d=eyJwIjoicnAtYm9vazEtZWFybHktYWNjZXNzIiwic2lnIjoiMCRCPDlaRk5-czd5IX5PYzQpbVJPaUYzTFJ2TU1KX3lRfG5kP0RUcyIsInQiOiJjaGFwdGVycy8wNC8xMC5tZCAoZWZlODkwYWZhZDI2YWZjOSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL3JlYWxweXRob24vYm9vazEvYmxvYi9lZmU4OTBhZmFkMjZhZmM5OThiNDg3Y2E0ODI0NWRjZWRhYjlmYjM3L2NoYXB0ZXJzLzA0LzEwLm1kIn0=

