
3 Orbital Mechanics

Isaac Newton (1642/3–1727) was born in rural England; his birth date was 1642 De-
cember 25 according to the Julian calendar (still in use in England at the time), but 1643
January 4 according to the Gregorian calendar. When young Newton proved to be incom-
petent at managing his family’s farm, he was sent to Cambridge University and started
to thrive as a scholar. In 1665, the year in which Newton earned his bachelor’s degree, an
outbreak of the plague closed down the university, and Newton retreated to his family’s
farm and began to think—very hard. The period when the university was closed was
Newton’s annus mirabilis, during which he discovered calculus, formulated his three
laws of motion and his law of universal gravitation, and performed ground-breaking
experiments in optics. Much of the remainder of Newton’s long life was dedicated to
developing the ideas he had in this burst of youthful creativity.1

Newton didn’t publish his laws of motion and law of universal gravitation until 1687,
when his book Philosophiae Naturalis Principia Mathematica (“Mathematical Princi-
ples of Natural Philosophy”) was published. The laws of motion can be summarized as
follows:

1. An object’s velocity remains constant unless a net outside force acts upon it.

2. If a net outside force acts on an object, its acceleration is directly proportional to
the force and inversely proportional to the mass of the object. In short, �F = m�a,
where �F is the outside force, m is the mass, and �a is the acceleration.

3. Forces come in pairs, equal in magnitude and opposite in direction. (As Newton
put it: Actioni contrariam semper et aequalem esse reactionem, or “Every action
has an equal and opposite reaction.”)

Newton’s law of universal gravitation can be concisely expressed in mathematical form.
Suppose that two spherical objects, of mass M and m, are separated by a distance r .

1 He also performed many alchemical experiments while trying to systematize chemistry in the way he did
physics, not to mention writing reams of theological works, becoming Master of the Royal Mint, and serving
as president of the Royal Society for nearly a quarter-century.
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62 Chapter 3 Orbital Mechanics

(The distance r is measured between the centers of the two objects.) Newton’s law tells
us that the gravitational attraction between the two objects is

F = −GMm

r2
, (3.1)

where G, called the gravitational constant, is a universal constant whose value is
G = 6.67 × 10−11 Nm2 kg−2 (where N stands for newton).2 The negative sign in equa-
tion (3.1) tells us that gravity is always an attractive force.

3.1 DERIVING KEPLER’S LAWS

Newton derived the form of equation (3.1) by requiring that the force of gravity result
in planetary orbits that obey Kepler’s laws of planetary motion. Newton was solving the
problem in the difficult direction: he deduced the form of the law of gravitation starting
from the observations. Since we aren’t as smart as Newton, we will take the easier direc-
tion in the following section; starting with Newton’s law of universal gravitation, we’ll
show that Kepler’s laws follow as a consequence. Although it may seem numerically
incongruous, the derivations will flow more smoothly if we begin by deriving Kepler’s
second law, then go on to the first and third laws.

3.1.1 Kepler’s Second Law

Gravity is an example of a central force, defined as a force directed straight toward or
away from some central point, with a magnitude that depends only on the distance r

from that point. The gravitational force qualifies as a central force because the force �F
acting on the mass m always points toward the mass M (the central point of the force),
and the magnitude of the gravitational force is ∝ 1/r2, where r is the separation of the
two masses.3 While analyzing the motion of a particle responding to a central force, it is
convenient to be able to switch from Cartesian coordinates to polar coordinates.

In a Cartesian coordinate system (Figure 3.1), the unit vectors along the x, y, and z

axes are ı̂, ĵ, and k̂, respectively. Suppose we choose our Cartesian coordinate axes such
that the larger mass M lies at the origin, and the position �r and velocity �v of the smaller
mass m lie in the xy plane. (For the sake of concreteness, let’s call mass M the Sun, and
mass m a planet, although the situation applies in general to any system of two spherical
masses: a planet and a moon, a planet and an artificial satellite, a supermassive black
hole and a star—you name it.) The planet’s position (x, y) can now be expressed in polar
coordinates, where the polar coordinates (r, θ) are related to the Cartesian coordinates
(x, y) by the relations x = r cos θ and y = r sin θ . In polar coordinates, as illustrated in

2 The newton (N)—the force required to accelerate 1 kilogram at one meter per second per second—is
equivalent to 3.6 ounces, or about the weight of a small apple.
3 The electrostatic repulsion or attraction between two charged particles is another example of a central force.
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FIGURE 3.2 Axes and unit vectors in a polar coordinate system.

Figure 3.2, the unit vectors r̂ and θ̂ are

r̂ = ı̂ cos θ + ĵ sin θ (3.2)

and

θ̂ = −ı̂ sin θ + ĵ cos θ. (3.3)

The dot product (or scalar product) of these unit vectors is

r̂ . θ̂ = − cos θ sin θ + sin θ cos θ = 0, (3.4)
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and their cross product (or vector product) is

r̂ × θ̂ =
∣∣∣∣∣∣

ı̂ ĵ k̂
cos θ sin θ 0

− sin θ cos θ 0

∣∣∣∣∣∣ = k̂(cos2 θ + sin2 θ) = k̂, (3.5)

thus demonstrating that r̂ and θ̂ are mutually orthogonal as well as being orthogonal to
k̂, the unit vector in the z direction.

From equations (3.2) and (3.3), we see that

d r̂
dθ

= d

dθ
(ı̂ cos θ + ĵ sin θ) = −ı̂ sin θ + ĵ cos θ = θ̂ (3.6)

and

d θ̂

dθ
= d

dθ
(−ı̂ sin θ + ĵ cos θ) = −ı̂ cos θ − ĵ sin θ = −r̂. (3.7)

We can then apply the chain rule to find the rate of change of the unit vectors r̂ and θ̂:

d r̂
dt

= d r̂
dθ

dθ

dt
= θ̂

dθ

dt
(3.8)

and

d θ̂

dt
= d θ̂

dθ

dθ

dt
= −r̂

dθ

dt
. (3.9)

Note that since r̂ and θ̂ are unit vectors, they change only in direction, not in magnitude.
The velocity of the planet can be expressed in polar coordinates as

�v ≡ d�r
dt

= d(r r̂)
dt

= dr

dt
r̂ + r

d r̂
dt

= vr r̂ + vt θ̂, (3.10)

where

vr = dr

dt
(3.11)

is the radial velocity and

vt = r
dθ

dt
(3.12)

is the tangential velocity.
The angular momentum of the planet is defined as

�L ≡ �r × �p, (3.13)

where �p = m�v is the linear momentum. The rate of change of the angular momentum is
then

d �L
dt

= d�r
dt

× �p + �r × d�p
dt

= �v × m�v + �r × m
d�v
dt

. (3.14)
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FIGURE 3.3 The motions of a planet during a short time interval �t .

From Newton’s second law of motion, we know that md�v/dt = �F. Thus, equation (3.14)
can be rewritten as

d �L
dt

= m(�v × �v) + �r × �F. (3.15)

However, �v × �v = 0 (that’s just a vector identity), and for a central force, �F is parallel to
�r and thus �F × �r ∝ �r × �r = 0. We conclude that for gravity or any other central force,
angular momentum is conserved:

d �L
dt

= 0. (3.16)

Note that the direction as well as the magnitude of �L is constant; this tells us that the
motion of an object moving under the influence of a central force is confined to a plane.

The conservation of angular momentum is equivalent to Kepler’s second law; to
demonstrate that this is true, we use equation (3.10) to write the angular momentum
explicitly as

�L = �r × m�v = mrvt k̂ = Lk̂, (3.17)

where vt is the tangential velocity. Referring to Figure 3.3, consider a planet of mass m;
at a time t , it is at a distance r from the Sun, which has mass M . During a brief time
interval �t , the planet moves a distance vt�t in the tangential direction and a distance
vr�t in the radial direction. The area �A swept out by the planet–Sun line during this
brief interval can be approximated as the sum of two triangles:

�A ≈ 1

2
r(vt�t) + 1

2
(vr�t)(vt�t), (3.18)

where the two terms represent the left-hand triangle and the right-hand triangle in
Figure 3.3.4 In the limit vr�t 
 r , the right-hand triangle is vanishingly small compared
to the left-hand triangle, and the area swept out can be further simplified as

�A ≈ 1

2
r(vt�t). (3.19)

4 In Figure 3.3, we are looking at the specific case vr > 0, but performing a time reversal will yield the case
vr < 0.
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The rate at which the planet–Sun line sweeps out area can then be written

lim
�t→0

�A

�t
= dA

dt
= 1

2
rvt . (3.20)

However, since we know that L = mrvt , from equation (3.17), we can rewrite equa-
tion (3.20) in the form

dA

dt
= 1

2

L

m
. (3.21)

Since L and m are constant, so is the rate dA/dt at which the planet–Sun line sweeps
out area. In other words, we have demonstrated that Kepler’s second law will be true for
a body acting under any central force, not just the force of gravity.

3.1.2 Kepler’s First Law

To demonstrate that Kepler’s first law follows from Newton’s law of universal gravitation,
we will have to demonstrate that the trajectory r(θ) of the mass m (the planet) constitutes
an ellipse with the larger mass M (the Sun) at one focus. Using equations (3.12) and
(3.17), we can write the angular momentum per unit mass of the orbiting body as

L

m
= r2 dθ

dt
, (3.22)

which is constant for any central force. If the force acting on the mass m is gravitational,
then from Newton’s law of universal gravitation and second law of motion,

�F = −GMm

r2
r̂ = m

d�v
dt

. (3.23)

The orbital acceleration under the influence of gravity is then

d�v
dt

= −GM

r2
r̂. (3.24)

From equation (3.9), we know that

r̂ = −
(

dθ

dt

)−1
d θ̂

dt
. (3.25)

By combining equations (3.24) and (3.25), we find that the acceleration of the planet is

d�v
dt

= GM

r2

(
dθ

dt

)−1
d θ̂

dt
. (3.26)

Combining this equation with equation (3.22), we see

L

GMm

d�v
dt

= d θ̂

dt
. (3.27)
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FIGURE 3.4 Time t = 0 corresponds to perihelion passage, with the planet
crossing the x axis with its velocity in the positive y direction.

Integration of this simple differential equation yields

L

GMm
�v = θ̂ + �e, (3.28)

where �e is a constant of integration that depends on the initial conditions of the orbiting
planet. We may choose the initial conditions for our own convenience. Let’s choose the
time t = 0 to correspond to a perihelion passage of the planet, and orient the axes so
that perihelion passage occurs on the positive x axis (Figure 3.4). With this choice of
coordinates, �v and θ̂ both point in the y direction at t = 0; thus, we may write �e = eĵ,
where e is a constant. Equation (3.28) is then

L

GMm
�v = θ̂ + eĵ. (3.29)

We now take the dot product of this equation and the unit vector θ̂:

L

GMm
�v . θ̂ = θ̂ . θ̂ + eĵ . θ̂. (3.30)

To simplify the right-hand side of equation (3.30), we use equation (3.3) to find that
ĵ . θ̂ = cos θ . To simplify the left-hand side, we write

�v . θ̂ =
[
vr r̂ + vt θ̂

]
. θ̂ = vt. (3.31)

But, since equation (3.17) tells us that mrvt = L, we may write

�v . θ̂ = vt = L

mr
. (3.32)
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FIGURE 3.5 Conic sections demonstrated by slicing a cone.

Substituting equation (3.32) back into equation (3.30), we find a relationship between r

and θ for fixed values of M , m, L, and e:

L2

GMm2r
= 1 + e cos θ, (3.33)

which can also be written in the form

r = L2

GMm2(1 + e cos θ)
. (3.34)

Equation (3.34) is the equation of a conic section in polar coordinates; as such, it provides
a generalization of Kepler’s first law.

Conic sections can be obtained by slicing a cone with a plane, as illustrated in
Figure 3.5. If the plane is perpendicular to the cone’s axis, then the conic section is a
circle; from equation (3.34), we see that a circle corresponds to the special case e = 0, and
hence r = L2/(GMm2) = constant. If the slicing plane is tilted from the perpendicular
by an angle less than the half-opening angle of the cone, the conic section obtained is an
ellipse; this corresponds to the special case 0 < e < 1.5 When the slicing plane is tilted
from the perpendicular by an angle exactly equal to the half-opening angle of the cone,
the conic section resulting is a parabola; this is the special case e = 1. Finally, when
the slicing plane is tilted by a larger angle, the conic section that results is a hyperbola,

5 Yes, the parameter e in equation (3.34) is the same as the eccentricity e that we encountered while discussing
elliptical orbits in Section 2.5, that is, the distance between foci divided by the major axis length.
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FIGURE 3.6 An ellipse of semimajor axis a and semiminor axis b.

which has e > 1. Kepler’s first law is thus a special case that deals with closed orbits; that
is, orbits with e < 1, which form closed curves (ellipses or circles). The basic physics of
gravitation, however, permits open orbits as well, that is, parabolic or hyperbolic orbits
with e ≥ 1.

We have blithely asserted that the parameter e in equation (3.34), when it lies in the
range 0 ≤ e < 1, is precisely the same as the eccentricity of an ellipse, defined as the
distance between the foci divided by the length of the major axis. It is time to support
that assertion by looking at the properties of ellipses in more depth. In Figure 3.6, an
ellipse is shown along with a set of Cartesian coordinates; the origin of the coordinates
is the center of the ellipse; the x axis lies along the major axis of the ellipse; and the y

axis lies along the minor axis. We also define a system of polar coordinates centered on
one of the foci. Let’s call the focus at the origin the principal focus and require that it
be the focus where the Sun is located, if the ellipse is regarded as a planetary orbit. The
angular coordinate θ is measured counterclockwise from the x axis in the manner shown
in Figure 3.6. The semimajor axis has length a and the semiminor axis has length b; each
of the foci is displaced from the origin of the Cartesian coordinates by a distance ae. An
arbitrary point on the ellipse is displaced by a distance r from the principal focus and a
distance r ′ from the other focus; the basic property of an ellipse is that r + r ′ is constant.
By considering the two points of the ellipse lying on the x axis (x = ±a, y = 0), we find
that r + r ′ = 2a. It also follows that the perihelion distance, if the ellipse is regarded as
a planetary orbit, is q = a(1 − e) and the aphelion distance is Q = a(1 + e).

Consider the point of the ellipse that lies on the positive y axis, where r = r ′ = a

as shown in Figure 3.7. From the Pythagorean theorem, as applied to the right triangle
drawn in the figure, we find that b2 + (ae)2 = r2, or since r = a,

b2 = a2(1 − e2). (3.35)
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FIGURE 3.7 The relationship among the semimajor axis a, the semiminor axis
b, and the eccentricity e.

This enables us to translate between the axis ratio of an ellipse, b/a, and its eccentricity,

e = (1 − b2/a2)1/2. (3.36)

It can also be shown that the average distance of all points on the ellipse from either
focus is equal to the semimajor axis length a. To prove this, consider an arbitrary point
on the ellipse, P(x, y), and its reflection across the y axis, P ′(−x, y), as shown in
Figure 3.8. The distance from point P to the focus on the positive x axis is r . By
symmetry, the distance from the complementary point P ′ to the focus on the positive
x axis is r ′, where r ′ is the distance from point P to the focus on the negative x axis. The
average distance of the two points from the focus on the positive x axis is then

〈r〉 = r + r ′

2
= 2a

2
= a. (3.37)

Since this relation holds for all (P, P ′) pairs, regardless of the choice of P , it is true that
the average distance 〈r〉 from the focus over the entire ellipse is a.

Let us now describe the ellipse in terms of the polar coordinates (r, θ), where r is the
distance from the principal focus and θ is the polar angle measured counterclockwise
from the positive x axis, as shown in Figure 3.9. (When the ellipse represents an orbit,
the angle θ is called the true anomaly.) Note in the figure that we can draw a triangle
from the principal focus at r = 0, to an arbitrary point (r, θ) on the ellipse, to the other
focus, then back to the principal focus. The internal angle of the vertex at the principal
focus (as shown in Figure 2.17) is π − θ . We can thus use the law of cosines to write

r ′2 = r2 + (2ae)2 − 2(2ae)r cos(π − θ). (3.38)

Using the trigonometric identity cos(π − θ) = − cos θ , this becomes

r ′2 = r2 + 4a2e2 + 4aer cos θ. (3.39)
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FIGURE 3.9 An ellipse in polar coordinates.

However, from the definition of the ellipse, we know that r ′ = 2a − r , which yields
(squaring each side of the equation)

r ′2 = 4a2 − 4ar + r2. (3.40)

Since the right-hand sides of equations (3.39) and (3.40) are equal, this tells us

4a2e2 + 4aer cos θ = 4a2 − 4ar. (3.41)
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After dividing by 4a and doing a bit of rearranging, we find

r = a(1 − e2)

1 + e cos θ
. (3.42)

This equation for r as a function of θ is the equation for an ellipse in polar coordinates,
with the origin at one focus. This is equivalent in form to equation (3.34), which gives
the shape of an orbit if Newton’s law of universal gravitation holds true. Comparison of
equations (3.34) and (3.42) tells us that the angular momentum L of a planet’s orbital
motion is related to the size and shape of its orbit by the relation

L2

m2
= GMa(1 − e2). (3.43)

Since L = mrvt , this relation can also be written in the form

r2v2
t
= GMa(1 − e2). (3.44)

When a planet is at perihelion, its velocity is entirely tangential (vpe = vt), and its distance
from the Sun is q = a(1 − e). This implies that for a planet at perihelion,

v2
pea

2(1 − e)2 = GMa(1 − e2), (3.45)

or

vpe =
[
GM

a

1 + e

1 − e

]1/2

. (3.46)

A similar analysis of the planet’s speed at aphelion, where its velocity is also entirely
tangential (vap = vt), tells us that

vap =
[
GM

a

1 − e

1 + e

]1/2

. (3.47)

3.1.3 Kepler’s Third Law

Kepler’s second law (equation 3.21) tells us that the area swept out per unit time by the
planet–Sun line is a constant, L/(2m). The area swept out in one orbital period, P , is
the area of the ellipse, given by the standard formula A = πab. For one complete orbital
period, then, we may write

πab

P
= L

2m
. (3.48)

By squaring this equation and making the substitution b2 = a2(1 − e2), we have

π2a4(1 − e2)

P 2
= L2

4m2
. (3.49)
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Since equation (3.43) gives us a relation among L, a, and e, namely,

L2

m2
= GMa(1 − e2), (3.50)

we can substitute back into equation (3.49) to find

π2a4(1 − e2)

P 2
= GMa(1 − e2)

4
, (3.51)

or

P 2 = 4π2

GM
a3, (3.52)

which we recognize as Kepler’s third law, P 2 = Ka3, with the proportionality constant
K ∝ 1/M . With somewhat more exertion, taking into account the acceleration of the
Sun (mass M) as well as the lower-mass planet (mass m), it is possible to reach the more
general form

P 2 = 4π2

G(M + m)
a3. (3.53)

Within the solar system, however, even the most massive of the planets, Jupiter, has a
mass only 1/1000 that of the Sun, so the approximation M + m ≈ M is adequate.

The masses of celestial bodies are measured by how they accelerate nearby masses. In
particular, we can use the orbital periods and semimajor axes of the planets to determine
the mass of the Sun:

M = 4π2a3

GP 2
. (3.54)

The orbital period of the Earth, for instance, is 365.256 days × 86,400 s day−1 = 3.16 ×
107 s.6 The semimajor axis of the Earth’s orbit is a = 1 AU = 1.496 × 1011 m. Thus, we
can compute the mass of the Sun as

M = 4π2(1.496 × 1011 m)3

6.67 × 10−11 m3 s−2 kg−1(3.16 × 107 s)2

= 1.98 × 1030 kg ≡ 1M�. (3.55)

Later in this book, we will find that the solar mass (M�) is a useful unit for expressing
the masses of stars (and larger objects).7

6 A useful approximation is that the length of the year is π × 107 s.
7 The “dot in a circle” symbol � is the standard astronomical symbol for the Sun. It is of great antiquity, being
identical to the Egyptian hieroglyph for the Sun god Ra, seen here, for instance, as the first syllable in the name

of the pharaoh Ramses the Great:
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3.2 ORBITAL ENERGETICS

Suppose you place a particle of mass m at a location �r relative to an object of mass M;
you give it a kick so that it is initially moving at a velocity �v. What determines whether
its orbit is closed (a circle or ellipse, with e < 1) or open (a parabola or hyperbola, with
e ≥ 1)? In a sense, it’s all about the energy. The particle will have an energy E that is the
sum of its kinetic energy K and its gravitational potential energy U :

E = K + U = 1

2
mv2 − GMm

r
. (3.56)

The square of the velocity can be determined by squaring equation (3.28):(
L

GMm

)2

�v . �v = θ̂ . θ̂ + 2eθ̂ . ĵ + e2ĵ . ĵ

(
L

GMm

)2

v2 = 1 + 2eθ̂ . ĵ + e2. (3.57)

Since θ̂ . ĵ = cos θ , from equation (3.3), we may now write the kinetic energy as

K = 1

2
mv2 = 1

2
m

(
GMm

L

)2

(1 + e2 + 2e cos θ). (3.58)

The kinetic energy is greatest at perihelion (θ = 0), which is as it should be, since that’s
when the particle is moving fastest. Now using equation (3.34) for r as a function of θ ,
we can write the potential energy as

U = −GMm

r
= − (GM)2m3

L2
(1 + e cos θ). (3.59)

The amplitude of the potential energy, |U |, is greatest at perihelion (θ = 0), which is as
it should be, since that’s when the particle is closest to the mass M . By adding together
the kinetic energy (equation 3.58) and the potential energy (equation 3.59), and doing a
bit of rearranging, we find

E =
(

GMm

L

)2
m

2
(e2 − 1). (3.60)

This is constant, which is as it should be, since energy is conserved for this isolated two-
body system. We can also, if we so choose, write the orbital eccentricity as a function of
energy E and angular momentum L:

e =
(

1 + 2EL2

G2M2m3

)1/2

. (3.61)

We can readily identify three distinct cases:

1. Hyperbolic orbits: As we recall from our discussion of conic sections (page 68),
the case e > 1represents a hyperbola. Equation (3.60) shows that e > 1corresponds
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to a total energy E > 0; that is, K > |U |. This is an open orbit; the mass m is
not gravitationally bound to the mass M . The mass m makes a single perihelion
passage at θ = 0 and does not return—its value of r , the distance from the mass
M , continues to increase monotonically after perihelion passage.

2. Parabolic orbits: In the case where e = 1 exactly, the mass m is marginally un-
bound to M; that is, its velocity approaches zero asymptotically as r approaches
infinity. In the case of a parabolic orbit, equation (3.60) shows that e = 1 corre-
sponds to E = 0, or K = |U |. Equation (3.56) reveals that a particle will be on a
parabolic orbit if its speed is equal to the escape speed:

vesc(r) =
(

2GM

r

)1/2

. (3.62)

If its velocity is greater than vesc, it will be on a hyperbolic orbit.
3. Elliptical orbits: In the case where e < 1, the mass m is gravitationally bound;

it goes around the mass M on an elliptical orbit. The total energy, when e < 1, is
E < 0, corresponding to K < |U |. The special case e = 0 corresponds to a perfectly
circular orbit. Equation (3.60) shows that a circular orbit is the orbit that minimizes
the energy E for a given angular momentum L.

3.3 ORBITAL SPEED

It is not possible in general to obtain a simple equation that gives the time dependence
of a planet’s distance from the Sun, r(t), or orbital speed, v(t).8 However, it is possible
to find the orbital speed v as a simple function of r , which can be useful. We start with
the equation for a conic section (equation 3.42), which we write in the form

e cos θ = a(1 − e2) − r

r
. (3.63)

The orbital speed as a function of θ is given by equation (3.58):

v2 = 2K

m
=

(
GMm

L

)2

(1 + e2 + 2e cos θ). (3.64)

Thus, by combining equations (3.63) and (3.64), we find an equation that gives the orbital
speed as a function of r:

v2 = G2M2m2

L2

(
1 + e2 + 2

r
[a(1 − e2) − r]

)
. (3.65)

Using equation (3.43), which tells us L2/m2 = GMa(1 − e2), we find

8 This also implies that there is no simple equation for θ(t), since if we had one, we could use the conic section
equation for r(θ) to find r(t).
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v2 = G2M2

GMa(1 − e2)

(
r + e2r + 2a(1 − e2) − 2r

r

)

= GM

a(1 − e2)

(
2a(1 − e2) − r(1 − e2)

r

)

= GM

a

(
2a

r
− 1

)
= GM

(
2

r
− 1

a

)
. (3.66)

The resulting equation

v2 = GM

(
2

r
− 1

a

)
(3.67)

is called the vis viva equation. The Latin term vis viva, which translates literally to “living
force,” is an archaic bit of scientific terminology that was first employed by Gottfried
Leibniz (best known as the other discoverer of calculus). Leibniz used the term vis viva
to refer to the quantity mv2, what we would now call 2K , or twice the kinetic energy. The
vis viva equation is a statement of how the kinetic energy of an orbiting object changes
as a function of r . By using Kepler’s third law (equation 3.52), we can also write the vis
viva equation in the form

v(r) = 2πa

P

(
2
a

r
− 1

)1/2

. (3.68)

This implies that the orbital angular speed ω = v/r of a planet is

ω(r) = 2π

P

a

r

(
2
a

r
− 1

)1/2

. (3.69)

At perihelion, where r = q = a(1 − e), the angular speed of the planet is

ωpe = 2π

P

(1 + e)1/2

(1 − e)3/2
, (3.70)

and at aphelion, where r = Q = a(1 + e), the angular speed is

ωap = 2π

P

(1 − e)1/2

(1 + e)3/2
. (3.71)

Here on Earth, for instance, the observed average angular speed of the Sun along the
ecliptic is equal to 2π radians per sidereal year, or ω = 0.986◦/day. However, since the
Earth’s orbit has an eccentricity e = 0.017, the observed angular speed is greatest at the
time of perihelion (early January), when ωpe = 1.020◦/day, and smallest at the time of
aphelion (early July), when ωap = 0.953◦/day.

An interesting application of the vis viva equation (eq. 3.68) addresses the problem
of the transfer orbit. In traveling from the Earth to another planet, the transfer orbit
is the route you would take from the Earth to the other planet’s orbit. The Hohmann
transfer orbit, illustrated in Figure 3.10, is an ellipse whose perihelion is at the orbit of
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Mars at arrival Earth at launch
Sun

FIGURE 3.10 A Hohmann transfer orbit for interplanetary travel (here from
Earth to Mars). The transfer orbit is an ellipse with its perihelion at Earth and its
aphelion at the orbit of Mars.

the inner planet and whose aphelion is at the orbit of the outer planet. As the German
engineer Walter Hohmann pointed out in the 1920s, the Hohmann transfer orbit has two
desirable properties. First, it requires only two engine burns when done properly: one
when leaving Earth and one when the destination planet is reached. The rest of the time,
the spacecraft is “coasting” on a Newtonian orbit. Second, it is economical in its fuel
use; launching your spacecraft on a hyperbolic orbit will cause it to reach its destination
faster but requires more energy.

As a concrete example, suppose you want to send a spacecraft to Mars. As a first
approximation, we can assume that the orbit of the Earth is a circle of radius a⊕ = 1 AU =
1.50 × 108 km, with orbital period P⊕ = 1 yr = 3.16 × 107 s.9 We further assume that the
orbit of Mars is a larger circle, of radius aMars = 1.52a⊕ = 2.27 × 108 km, with orbital
period PMars = 1.88 yr = 5.94 × 107 s. The semimajor axis of the Hohmann transfer orbit
from Earth to Mars is

ato = a⊕ + aMars

2
= 1 AU + 1.52 AU

2
= 1.26 AU. (3.72)

The orbital period for the transfer orbit is then

Pto[ yr] = (a[ AU])3/2 = (1.26)3/2 = 1.41. (3.73)

Traveling from Earth to Mars requires half an orbit, or a time t = Pto/2 = 0.71 yr ≈
260 days.

The average speed of the Earth on its orbit is

v⊕ = 2πa⊕
P⊕

= 2π(1.50 × 108 km)

3.16 × 107 s
= 29.8 km s−1. (3.74)

9 The “cross in a circle” symbol ⊕ is the standard astronomical symbol for the Earth.
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The average speed of Mars is slower:

vMars = 2πaMars

PMars
= 2π(2.27 × 108 km)

5.94 × 107 s
= 24.0 km s−1. (3.75)

When the spacecraft has just left the Earth, it is at the perihelion of the Hohmann transfer
orbit. Its speed, from the vis viva equation (eq. 3.68), is

vpe = 2πato

Pto

(
2ato

a⊕
− 1

)1/2

= 2π(1.26 AU)(1.50 × 108 km AU−1)

(1.41 yr)(3.16 × 107 s yr−1)

[
2(1.26 AU)

1.00 AU
− 1

]1/2

= 26.7 km s−1(1.52)1/2 = 32.9 km s−1. (3.76)

Thus, at the perihelion of the Hohmann transfer orbit, the spacecraft must be going
faster than the Earth by an amount �v = vpe − v⊕ = 3.1 km s−1. When the spacecraft
is just reaching Mars, it is at the aphelion of the Hohmann transfer orbit. Its speed, from
equation (3.68), is then

vap = 2πato

Pto

(
2ato

aMars
− 1

)1/2

= 26.7 km s−1
[

2(1.26 AU)

1.52 AU
− 1

]1/2

= 21.7 km s−1. (3.77)

Thus, in order to match its velocity to that of Mars, the spacecraft must increase its speed
by �v = vMars − vap = 2.3 km s−1. (If you want your spacecraft to go into orbit around
Mars, like the Mars Reconnaissance Orbiter, the time, direction, and duration of your
engine burn depend on the orbital parameters you want to attain.)

Use of a Hohmann transfer orbit requires careful timing. If you are sending a space-
craft to Mars, for instance, the craft must reach the aphelion of its orbit just as Mars
reaches that point. This restricts launches to certain times, known as launch windows.
If you fail to launch during one launch window, you could wait for one synodic period
of the target planet before launching again. For a mission to Mars, whose synodic period
is 2.1 years, this could be a frustrating wait.

3.4 THE VIRIAL THEOREM

If a system contains only two spherical bodies, such as a star and planet, there is a simple
analytic solution (first seen in Section 2.5) for the planet’s trajectory, r(θ). Similarly,
Section 3.2 yields simple formulas for the planet’s kinetic energy K(θ) and potential
energy U(θ), while Section 3.3 gives the vis viva equation for v as a function of r . In a
system containing more than two bodies, however, there are no longer any simple analytic
solutions for the bodies’ properties. Thus, when astronomers study large stellar systems
such as star clusters and galaxies, they generally use numerical techniques to compute the
stellar orbits using a computer. However, despite the complexity of many-body systems
such as star clusters, it is possible to find useful statistical results that describe the average
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global properties of the system. One such result is the virial theorem, which relates the
total kinetic energy of a system to its total potential energy.

To derive the virial theorem, let’s suppose we have a system containing N stars (or
planets, or other compact massive bodies). The mass of the ith star is mi, and its location
is �ri. We can define a function

A ≡
N∑

i=1

mi

d�ri

dt
. �ri. (3.78)

The reason for defining this function starts to become a bit more obvious when we take
the time derivative of A:

dA

dt
=

N∑
i=1

(
mi

d�ri

dt
.
d�ri

dt
+ mi

d2�ri

dt2
. �ri

)
. (3.79)

The first term on the right-hand side of equation (3.79) is twice the kinetic energy, and
the second term can be transformed using Newton’s second law,

mi

d2�ri

dt2
= �Fi, (3.80)

where �Fi is the net force acting on the ith star. Thus, we may write

dA

dt
= 2K +

N∑
i=1

�Fi
. �ri, (3.81)

where K is the sum of the kinetic energies of all the stars in the system. The term
∑ �Fi

. �ri

was named the virial by the physicist Rudolf Clausius.10

Equation (3.81) is the most general form of the virial theorem. It applies to any system
of bodies that follow Newton’s second law, regardless of the forces �Fi acting on them.
A more useful form of the virial theorem can be found by taking the time average of
equation (3.81). If we average over the time interval t = 0 → t = τ , we find

2〈K〉 + 〈
N∑

i=1

�Fi
. �ri〉 = 〈dA

dt
〉

= 1

τ

∫ τ

0

dA

dt
dt

= A(τ) − A(0)

τ
. (3.82)

If the system is bound, then the velocity of each particle, as well as its displacement from
the origin, remains finite. In that case, A(t), as given by equation (3.78), is finite at all

10 Clausius also coined the term “entropy,” probably his most memorable contribution to the scientific
vocabulary.
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times, and the right-hand side of equation (3.82) goes to zero in the limit τ → ∞. Thus,
for any bound system of particles, the time-averaged virial theorem has the form

2〈K〉 + 〈
N∑

i=1

�Fi
. �ri〉 = 0. (3.83)

The virial theorem as expressed in equation (3.83) can be applied to any bound system,
for instance, to a gas of molecules enclosed within a box. However, as astronomers, we
are interested in the specific case of an isolated bound stellar system, in which the force
acting on the ith star is the sum of the gravitational forces exerted by the other N − 1
stars in the system:

�Fi =
∑
j �=i

Gmimj(�rj − �ri)

|�rj − �ri|3
. (3.84)

For such a system, what is the value of the virial,
∑ �Fi

. �ri? Let’s start with a simple
system containing only two stars. For this system, the virial will be

�F1
. �r1 + �F2

. �r2 = Gm1m2(�r2 − �r1) . �r1

|�r2 − �r1|3
+ Gm2m1(�r1 − �r2) . �r2

|�r1 − �r2|3

= −Gm1m2|�r2 − �r1|2
|�r2 − �r1|3

= − Gm1m2

|�r2 − �r1|
. (3.85)

The right-hand side of equation (3.85) is simply the potential energy U of the two-star
system. By extension, for a three-star system, the virial will be equal to the sum of
the potential energies of all three pairs: (1,2), (2,3), and (3,1). For a system containing
N stars, the virial will be equal to the sum of the potential energies of all Npair =
N(N − 1)/2 pairs of stars that can be drawn from the system. We can thus write

N∑
i=1

�Fi
. �ri = U =

N∑
i=1

∑
j>i

− Gmimj

|�ri − �rj |
, (3.86)

and the virial equation (eq. 3.83) becomes

2〈K〉 + 〈U〉 = 0. (3.87)

The virial theorem is useful to astronomers, as we find in Section 20.2, when it enables
us to estimate the mass of distant galaxies.
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PROBLEMS

3.1 Comet Hale-Bopp has an orbit about the Sun with eccentricity e = 0.9951 and
semimajor axis length a = 186.5 AU. What is the sidereal orbital period of Comet
Hale-Bopp? What is Comet Hale-Bopp’s distance from the Sun at perihelion? What
is its distance from the Sun at aphelion? Comet Hale-Bopp passed through perihelion
on 1997 April 1; did the previous perihelion passage of Comet Hale-Bopp occur
before or after the birth of Aristotle?

3.2 The asteroid Eros is seen in opposition from the Earth once every 847 days. What
is the sidereal orbital period of Eros? What is the length a of the semimajor axis of
Eros’ orbit? The eccentricity of the orbit of Eros is e = 0.223. Does Eros ever come
within 1 AU of the Sun?

3.3 Consider a satellite in a circular, low-Earth orbit; that is, the satellite’s elevation above
the Earth’s surface is h 
 R⊕. Show that the orbital period P for such a satellite is
approximately

P = C

(
1 + 3h

2R⊕

)
.

What is the numerical value of the constant C in minutes? When Puck, in A
Midsummer Night’s Dream, boasted, “I’ll put a girdle round about the Earth in
forty minutes” (Act 2, Scene 1), could he have done so by traveling on a circular
orbit, accelerated by the Earth’s gravity alone? If so, what would be his elevation h?

3.4 What is the orbital period for a low-lunar orbit (as was used by the Apollo command
modules)?

3.5 (a) Io is the innermost Galilean satellite of Jupiter. The orbital period of Io is
P = 1.769 days; the semimajor axis of its orbit is a = 421,600 km (slightly
larger than the Moon’s orbit about the Earth). Given this information, find the
mass of Jupiter.

(b) Phobos is the inner moon of Mars. The orbital period of Phobos is P = 0.32 days;
the semimajor axis of its orbit is a = 9370 km. Find the mass of Mars. (Hint: you
may assume the masses of Io and Phobos are negligible compared to those of
their parent planets.)

3.6 Communications and weather satellites are often placed in geosynchronous orbits. A
geosynchronous orbit is an orbit about the Earth with orbital period P exactly equal
to one sidereal day. What is the semimajor axis ags of a geosynchronous orbit? What
is the orbital velocity vgs of a satellite on a circular geosynchronous orbit?
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3.7 Starting with the equation for an ellipse in polar coordinates (eq. 3.42), derive the
more familiar Cartesian form,

x2

a2
+ y2

b2
= 1.

3.8 The Hubble Space Telescope (HST) is on a circular, low-Earth orbit, at an elevation
h = 600 km above the Earth’s surface. What is its orbital period? For an observer
who sees HST pass through the zenith, how long is HST above the horizon during
each orbit?

3.9 One way of lifting a satellite into geosynchronous orbit is to use the space shuttle to
lift it into a circular, low-Earth orbit (with h = 300 km above the Earth’s surface),
and then use a booster rocket to place the satellite on a Hohmann transfer orbit
(see Section 3.3) up to a circular geosynchronous orbit. What is the orbital velocity
vss of the satellite while it is still in low-Earth orbit? What is the orbital velocity
at pericenter, vpe, of the appropriate Hohmann transfer orbit? What is the orbital
velocity at apocenter, vap, of the Hohmann transfer orbit? How long does it take the
satellite to travel from the low-Earth orbit to the geosynchronous orbit?

3.10 A small particle of mass m is on a circular orbit of radius R around a much larger mass
M . Suppose that we suddenly increase the speed at which the mass m is moving, by
a factor α (that is, vfinal = αvinitial, with α > 1). Compute the major axis, minor axis,
pericenter distance, and apocenter distance for the new orbit; express your answers
in terms of R and α alone.




