Chapter 1 ®)
Python Basics e

Abstract This chapter explains basic programming concepts. After an overview of
common Python distributions, we show how to use Python as a simple calculator. As
a first step toward programming, variables and expressions are introduced. The arith-
metic series and Fibonacci numbers illustrate the concepts of iteration and branching.
We conclude this chapter with a program for the computation of a planet’s orbital
velocity around the Sun, using constants and functions from libraries and giving a
small glimpse at objects in Python.

1.1 Using Python

There is quite a variety of Python installations. Depending on the operating system
of your computer, you might have some basic Python preinstalled. Typically, this is
the case on Linux computers. However, you might find it rather cumbersome to use,
especially if you are not well experienced with writing source code in elementary
text editors and executing the code on the command line. What is more, installing
additional packages typically requires administrative privileges. If you work, for
example, in a computer lab it is likely that you do not have the necessary access rights.
Apart from that, Python version 2.x (that is major version 2 with some subversion
x) is still in use, while this book is based on version 3.x.

Especially as a beginner, you will probably find it convenient to work with aa GUI
(graphical user interface). Two popular choices for Python programming are Spyder
and Jupyter. Spyder (www.spyder-ide.org) is a classical IDE (integrated development
environment) which allows you to edit code, execute it and view the output in different
frames. Jupyter (jupyter.org) can be operated via an arbitrary web browser. It allows
you to run an interactive Python session with input and output cells (basically, just
like the console-based ipython). Apart from input cells for typing Python source
code, there are so-called markdown cells for writing headers and explanatory text.
This allows you to use formatting similar to elementary HTML for webpages. A
valuable feature is the incorporation of LaTeX to display mathematical expressions.
The examples in this book can be downloaded as Jupyter notebooks and Python
source code in zipped archives from uhh.de/phy-hs-pybook.

© Springer Nature Switzerland AG 2021 1
W. Schmidt and M. Volschow, Numerical Python in Astronomy and Astrophysics,

Undergraduate Lecture Notes in Physics,

https://doi.org/10.1007/978-3-030-70347-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70347-9_1&domain=pdf
https://www.spyder-ide.org/
https://jupyter.org/
http://uhh.de/phy-hs-pybook
https://doi.org/10.1007/978-3-030-70347-9_1

2 1 Python Basics

Since it depends on your personal preferences which software suits you best, we do
not presume a particular GUI or Python distribution here. If you choose to work with
Spyder or Jupyter, online documentation and tutorials will help you to install the soft-
ware and to get started (browse the official documentation under docs.spyder-ide.org
and jupyter-notebook.readthedocs.io/en/stable). For a comprehensive guideline, see
also [1, appendices A and B]. A powerful all-in-one solution is Anaconda, a Python
distribution and package manager that can be installed under Windows, macOS or
Linux by any user (see docs.anaconda.com for more information). Anaconda pro-
vides a largely autonomous environment with all required components and libraries
on a per-user basis. Of course, this comes at the cost of large resource consumption
(in particular, watch your available disk space).

As a first step, check if you can run the traditional “Hello, World!” example with
your favorite Python installation. Being astronomers, we use a slightly modified
version:

1 ‘ print ()

In this book Python source code is listed in frames with lines numbered on the left (in
the above example, there is just one line). Although these line numbers are not part
of the source code (that’s why they are shown outside of the frame), they are useful
for referring to particular parts of a code example. You might be able to display line
numbers in your code editor (in Jupyter notebooks, for example, line numbering can
be switched on and off in the View menu), but you should not confuse these numbers
with the line numbers used in this book. Usually we will continue the numbering
over several frames if the displayed pieces of code are related to each other, but we
also frequently reset line numbers to 1 when a new program starts or a new idea is
introduced. Whenever you encounter a code line with number 1 it should alert you:
at this point something new begins.

After executing the print statement in line 1 above, you should see somewhere on
your screen the output1

Hello, Universe!

The quotes in the source code are not shown in the output. They are used to signify
that the enclosed characters form a string. As you might have guessed, the print ()
function puts the string specified in parentheses on the screen (more precisely, in a
window or frame that is used by Python for output).?

"How to execute Python code depends on the software you are using (consult the documentation).
In a notebook, for example, all you need to do is to simultaneously press the enter and shift keys of
your keyboard in the cell containing the code.

2Enclosing the string in parentheses is obligatory in Python 3. You may find versions of “Hello,
World!” without parentheses on the web, which work only with Python 2.

https://docs.spyder-ide.org/
https://jupyter-notebook.readthedocs.io/en/stable/
https://docs.anaconda.com/

1

O Y R

1.2 Understanding Expressions and Assignments 3

1.2 Understanding Expressions and Assignments

Apart from printing messages on the screen, which is not particularly exciting by
itself, Python can be used as a scientific calculator. Let us begin right away with an
example from astronomy. Suppose we want to calculate the velocity at which Earth
is moving along its orbit around the Sun. For simplicity, we treat the orbit as circular
(in fact, it is elliptical with a small eccentricity of 0.017). From the laws of circular
motion it follows that we can simply calculate the velocity as the circumference 21 r
of the orbit divided by the period P, which happens to be one year for Earth. After
having looked up the value of T, the orbital radius r (i.e. the distance to the Sun) in
km, and the length of a year in seconds,’ we type

2*3.14159*1.496e8/3.156e7

and, once evaluated by Python, we obtain

29.783388086185045

for the orbital velocity in km/s. Line 1 is an example for a Python expression con-
sisting of literal numbers and the arithmetic operators * and / for multiplication
and division, respectively. The factor of two in the formula for the circumference
is simply written as the integer 2, while the number w is approximately expressed
in fixed-point decimal notation as 3.14159.* The radius r = 1.496 x 10® km is
expressed as 1.496e8, which is a so-called floating point literal . The character
e followed by an integer indicates the exponent of the leading digit in the decimal
system. In this case, e8 corresponds to the factor 103. Negative exponents are indi-
cated by a minus sign after e. For example, 1073 can be expressed as 1.0e-3 or
just 1e-3 (inserting + for positive exponents is optional).

Of course, there is much more to Python than evaluating literal expressions like
a calculator. To get an idea how this works, we turn the example shown above into a
little Python program:

radius = 1.496e8 # orbital radius in km
period = 3.156e7 # orbital period in s

calculate orbital velocity
velocity = 2*3.14159*radius/period

Lines 1, 2, and 5 are examples for assignments. Each assignment binds the value of
the expression on the right-hand side of the equality sign = to a name on the left-hand
side. A value with a name that can be used to refer to that value is in essence what is

3Strictly speaking, the time needed by Earth to complete one revolution around the Sun is the
sidereal year, which has about 365.256d. One day has 86400s.

“In many programming languages, integers such as 2 are treated differently than floating point
numbers. For example, using 2 . 0 instead of the integer 2 in a division might produce a different
result. In Python 3, it is usually not necessary to make this distinction. Alas, Python 2 behaves
differently in this respect.

4 1 Python Basics

called a variable in Python.5 In line 5, the variables radius and period are used
to compute the orbital velocity of Earth from the formula

2nr L1

v=— (1.1)
and the result is in turn assigned to the variable velocity. Any text between the
hash character # and the end of a line is not Python code but a comment explaining
the code to someone other than the programmer (once in a while, however, even
programmers might be grateful for being reminded in comments about code details
in long and complex programs). For example, the comments in line 1 and 2 provide
some information about the physical meaning (radius and period of an orbit) and
specify the units that are used (km and s). Line 4 comments on what is going on in
the following line.

Now, if you execute the code listed above, you might find it surprising that there
is no output whatsoever. Actually, the orbital velocity is computed by Python, but
assignments do not produce output. To see the value of the velocity, we can append
the print statement

6 ‘print (velocity)

to the program (since this line depends on code lines 1-5 above, we continue the
numbering and will keep doing so until an entirely new program starts), which results
in the output®

29.783388086185045

This is the same value we obtained with the calculator example at the beginning of
this section.

However, we can do a lot better than that by using further Python features. First
of all, it is good practice to print the result of a program much in the same way as,
hopefully, you would write the result of a handwritten calculation: It should be stated
that the result is a velocity in units of km/s. This can be achieved quite easily by using
string literals as in the very first example in Sect. 1.1:

7 ‘print(, velocity,)

producing the output

orbital velocity = 29.783388086185045 km/s

5The concept of a variable in Python is different from variables in programming languages such as
C, where variables have a fixed data type and can be declared without assigning a value. Basically, a
variable in C is a placeholder in memory whose size is determined by the data type. Python variables
are objects that are much more versatile.

%In interactive Python, just writing the variable name in the final line of a cell would also result in
its value being displayed in the output.

1.2 Understanding Expressions and Assignments 5

It is important to distinguish between the word ‘velocity’ appearing in the string

on the one hand and the variable velocity sepa-
rated by commas on the other hand. In the output produced by print the two strings
are concatenated with the value of the variable. Using such a print statement may
seem overly complicated because we know, of course, that the program computes
the orbital velocity and, since the radius is given in km and the period in seconds, the
resulting velocity will be in units of km/s. However, the meaning of a numerical value
without any additional information might not be obvious at all in complex, real-world
programs producing a multitude of results. For this reason, we shall adhere to the
practice of precisely outputting results throughout this book. The simpler version
shown in line 6 may come in useful if a program does not work as expected and you
want to check intermediate results.

An important issue in numerical computations is the precision of the result. By
default, Python displays a floating point value with machine precision (i.e. the maxi-
mal precision that is supported by the way a computer stores numbers in memory and
performs operations on them). However, not all of the digits are necessarily signifi-
cant. In our example, we computed the orbital velocity from parameters (the radius
and the period) with only four significant digits, corresponding to a relative error
of the order 10~*. Although Python performs arithmetical operations with machine
precision, the inaccuracy of our data introduces a much larger error. Consequently,
it is pointless to display the result with machine precision. Insignificant digits can be
discarded in the output by appropriately formatting the value:

8 ‘ print (.format (velocity))
Let us see how this works:

e The method format () inserts the value of the variable in parentheses into the
preceding string (mind the dot in between). You will learn more about methods in
Sect. 1.4.

e The placeholder {:5.2f} controls where and in which format the value of the
variable velocity is inserted. The format specifier 5.2f after the colon :
indicates that the value is to be displayed in fixed-point notation with 5 digits
altogether (including the decimal point) and 2 digits after the decimal point. The
colon before the format specifier is actually not superfluous. It is needed if several
variables are formatted in one print statement (examples will follow later).

Indeed, the output now reads

orbital velocity = 29.78 km/s

Optionally, the total number of digits in the formatting command can be omitted.
Python will then just fill in the leading digits before the decimal point (try it; also
change the figures in the command and try to understand what happens). A fixed
number of digits can be useful, for example, when printing tabulated data.

As the term variable indicates, the value of a variable can be changed in subsequent
lines of the program by assigning a new value. For example, you might want to

10

6 1 Python Basics

calculate the orbital velocity of a hypothetical planet at ten times the distance of
the Earth from the Sun, i.e. r = 1.496 x 10° km. To that end, we could start with
the assignment radius=1.496e9. Alternatively, we can make use of the of the
current value based on the assignment in line 1 and do the following:

radius = 10*radius
print (.format (radius))

Although an assignment may appear as the equivalent of a mathematical equality, it is
of crucial importance to understand that it is not. Transcribing line 9 into the algebraic
equationr = 10r is nonsense because one would obtain 1 = 10 after dividing through
r, which is obviously a contradiction. Keep in mind:

The assignment operator = in Python means set fo, not is equal to.

The code in line 9 thus encompasses three steps:

(a) Take the value currently assigned to radius,
(b) multiply this value by ten
(c) and reassign the result to radius.

Checking this with the print statement in line 10, we find that the new value of the
variable radius is indeed 10 times larger than the original value from line 1:

new orbital radius = 1.496e+09 km

The radius is displayed in exponential notation with three digits after the decimal
point, which is enabled by the formatting type e in place of £ in the placeholder
{:.3e} for the radius (check what happens if you use type f in line 10). You must
also be aware that repeatedly executing the assignment radius = 10*radius
in interactive Python increases the radius again and again by a factor of 10, which is
possibly not what you might want. However, repeated operation on the same variable
is done on purpose in iterative constructions called loops (see Sect. 1.3).

After having defined a new radius, it would not be correct to go straight to the
computation of the orbital velocity since the period of the orbit changes, too. The
relation between period and radius is given by Kepler’s third law of planetary motion,
which will be covered in more detail in Sect. 2.2. For a planet in a circular orbit around
the Sun, this relation can be expressed as’

2
L

- 1.2
o (1.2)

"Here it is assumed that the mass of the planet is negligible compared to the mass of the Sun. For
the general formulation of Kepler’s third law see Sect.2.2.

11
12
13
14
15
16
17
18

1.2 Understanding Expressions and Assignments 7

where M=1.989 x 10°° kg is the mass of the Sun and G=6.674 x 10~'! Nkg~2 m?
is the gravitational constant. To calculate P for given r, we rewrite this equation in
the form

P =21 (GM)~ 232,

This formula can be easily turned into Python code by using the exponentiation
operator ** for calculating the power of an expression:

calculate period in s from radius in km (Kepler’s third law)

period = 2*3.14159 * (6.674e-11*1.989e30)**(-1/2) * \
(le3*radius) ** (3/2)

print period in yr

print (.format (period/3.156e7))

velocity = 2*3.14159*radius/period
print (. format (velocity))

The results are

new orbital period = 31.6 yr
new orbital velocity = 9.42 km/s

Hence, it would take more than thirty years for the planet to complete its orbit around
the Sun, as its orbital velocity is only about one third of Earth’s velocity. Actually,
these parameters are quite close to those of the planet Saturn in the solar system.
The backslash character \ in line 12 is used to continue an expression that does not
fit into a single line in the following line (there is no limitation on the length of a
line in Python, but code can become cumbersome to read if too much is squeezed
into a single line). An important lesson taught by the code listed above is that you
always need to be aware of physical units when performing numerical calculations.
Since the radius is specified in km, we obtain the orbital velocity in km/s. However,
the mass of the Sun and the gravitational constants in the expression for the orbital
period in lines 12-13 are defined in SI units. For the units to be compatible, we
need to convert the radius from km to m. This is the reason for the factor 103 in the
expression (le3*radius) ** (3/2).Of course, this does not change the value of
the variable radius itself. To avoid confusion, it is stated in the comment in line 11
which units are assumed. Another unit conversion is applied when the resulting period
is printed in units of a year in line 15, where the expression period/3.156e7 is
evaluated and inserted into the output string via format. As you may recall from
the beginning of this section, a year has 3.156 x 10s.

Wrong unit conversion is a common source of error, which may have severe con-
sequences. A famous example is the loss of NASA’s Mars Climate Orbiter due to
the inconsistent use of metric and imperial units in the software of the spacecraft.®
As a result, more than $100 million were quite literally burned on Mars. It is there-
fore extremely important to be clear about the units of all physical quantities in a

8See mars.jpl.nasa.gov/msp98/orbiter/.

https://mars.jpl.nasa.gov/msp98/orbiter/

8 1 Python Basics

program. Apart from the simple, but hardly foolproof approach of using explicit con-
version factors and indicating units in comments, you will learn different strategies
for ensuring the consistency of units in this book.

1.3 Control Structures

The computation of the orbital velocity of Earth in the previous section is a very
simple example for the implementation of a numerical algorithm in Python.® It
involves the following steps:

1. Initialisation of all data needed to perform the following computation.

2. An exactly defined sequence of computational rules (usually based on mathe-
matical formulas), unambiguously producing a result in a finite number of steps
given the input from step 1.

3. Output of the result.

In our example, the definition of the variables radius and period provides the
input, the expression for the orbital velocity is a computational rule, and the result
assigned to the variable velocity is printed as output.

A common generalization of this simple scheme is the repeated execution of the
same computational rule in a sequence of steps, where the outcome of one step is
used as input for the next step. This is called iteration and will be explained in the
remainder of this section. The independent application of the same operations to
multiple elements of data is important when working with arrays, which will be
introduced in Chap. 2.

Iteration requires a control structure for repeating the execution of a block of
statements a given number of times or until a certain condition is met and the iteration
terminates. Such a structure is called a loop. For example, let us consider the problem
of summing up the first 100 natural numbers (this is a special case of an arithmetic
series, in which each term differs by the previous one by a constant):

n

si=Y k=1+2+43+.. . +n. (1.3)
k=1

9The term algorithm derives from the astronomer and mathematician al-Khwarizmi whose name
was transcribed to Algoritmi in Latin (cf. [2] if you are interested in the historical background).
al-Khwarizmi worked at the House of Wisdom, a famous library in Bagdad in the early 9th century.
Not only was he the founder of the branch of mathematics that became later known as algebra, he
also introduced the decimal system including the digit O in a book which was preserved until the
modern era only in a Latin translation under the title Algoritmi de numero Indorum (this refers to
the origin of the number zero in India). The digit O is quintessential to the binary system used on
all modern computers.

